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1 Introduction
State estimation plays a crucial role in field autonomy by providing robust and accurate
robot states in real-time. In this deliverable, the objective is to present platform-
specific state estimation software stacks employed in aerial robots, the ANYmal legged
robot, and the Supervised Autonomous Harvest (SAHA) robot. Specifically, the aerial
robots include NTNU Resilient Micro Flyer (RMF), Leica BLK2FLY, and TUM
Smart Robotics Lab (SRL) drone. Quantitative as well as qualitative localization
and mapping results are shown that serve as a baseline of the state estimators in the
DigiForest project. Experimental results include both the field trials and benchmark
datasets where we compare presented state estimators to state-of-the-art methods.

This document is organized by robot platforms, and each chapter is organized by
following three Tasks:

• Multi-modal state estimation,

• Detection and handling of sensor degradation and failure,

• Long-term and viewpoint tolerant place recognition and localization.

The state estimators are multi-modal in the sense that different types of sensors,
which include interoceptive (IMUs, joint encoders) and exteroceptive sensors (LiDARs,
RGBD sensors), are fused for maximum robustness and accuracy. To further push
resilience, the state estimator detects sensor degradation and failure and discards
the corresponding measurements in the SLAM/odometry factor graph optimisation.
Furthermore, place recognition and localization enable long-term loop closure under
different sensor modalities and substantial view-point changes.

Notations Throughout this deliverable, the following notation will be used: coor-
dinate frames are written as F−→A and a vector expressed in this reference frame will
be denoted as Ar . The rigid body transformation which transforms points from a
reference frame F−→B to another reference frame F−→A is given by TAB ∈ SE(3) and can
be decomposed into a rotation matrix CAB ∈ SO(3) and the translational component
ArB . We also denote the rotation CAB with its unit quaternion form qAB . The most
important reference frames that will be used are: a fixed world reference frame F−→W ,
the camera coordinate frames F−→Ci

for i = 1 . . . N cameras, the IMU sensor frame F−→S ,
the LiDAR sensor frame F−→L and a map frame F−→M . Furthermore, [·]× represents the
skew-symmetric matrix of a 3D vector. If these definitions are not used, new notations
will be defined in the corresponding sections.
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2 Aerial robots
The task of aerial robots in the DigiForest project is an autonomous exploration in
the forest to record multi-modal sensor measurements including point clouds and
images and to map the environments including individual trees. Aerial robots serve
as a crucial entity in this project since they are not hindered by traversability and
can efficiently scan the environment. The collected data is further utilized to build
a highly precise forest model to support decision-making. To achieve this, there are
three aerial robot platforms that are equipped with cameras, inertial measurement
unit (IMU), and optionally LiDAR.

2.1 Resilient Micro flyer (RMF)
2.1.1 Multi-modal state estimation

Multi-modal sensors The RMF-Owl is a collision-tolerant drone built by ARL at
NTNU, and shared with SRL at TUM. It is a ≈ 1.5kg platform embarking an Ouster
OS0-64 [28] LiDAR, a Flir Blackfly S color camera, and a VN100 IMU for localization
and mapping. The LiDAR has a 360 × 90◦ FoV and provides scans at 10 or 20 Hz.
The camera has a FoV of 85 × 64◦ and has a synchronized global shutter, providing
images at 30 Hz.

State estimation The state estimator is based on CompSLAM [17], which relies
on the LiDAR odometry and mapping concept introduced in [47]. It performs loose
coupling of the sensor data. The LiDAR odometry consist of estimating the transform
between successive LiDAR scans via alignment of geometric features. It makes use
of point-to-line and point-to-plane metrics, as those demonstrated good robustness
to large-scale localization [47], scalability to the high density pointclouds without
performing computationally expensive point-to-point matching. Mapping is achieved
by registering new LiDAR scans to an aggregated map, performing scan-to-map
matching.

The compSLAM algorithm exploits, in addition to LiDAR, additional localization
modalities provided by, e.g., Visual Inertial Odometry (VIO). The VIO is merged
in a loosely-coupled fashion, ensuring continuity of observations when the geometric
features are not sufficient for ensuring a reliable estimation. This is typically the
case in self-similar environments, or in very sparse environment where scan-to-scan
matching becomes computationally expensive, e.g. in open forest environments.
Camera odometry estimates are obtained at a higher rate than pointcloud estimates.
Hence, we use camera odometry to estimate the relative transformation between
the successive pointclouds, and provide it as a prior for the scan-to-scan matching,
therefore improving the convergence rate of the pointcloud alignment process. The
transformation prior is used to predict the position of points at the current position.
The residual error, i.e. the sum of squared distances between the predicted and the
measured points, is used as the cost function to be minimized. Additionally, analyzing
the eigenvalues of the Jacobian of the aforementioned cost function provides insights
on failure of the underlying optimization process, and thus on the failure of the LiDAR
scan matching. In such an event, the VIO transform is used to propagate the LiDAR
odometry and mapping. More details on sensor failure detections are provided in
Section 2.1.2. The algorithm outline is presented in the block diagram in Fig. 1.

Finally, the LiDAR odometry, computed at 5 Hz, is fed to an EKF [24] fusing IMU
measurements for interpolating the odometry at the controller frequency, i.e. 100 Hz.
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Figure 1: Block diagram of the CompSLAM algorithm.

Experiments The state estimator was used onboard the drones for exploration
missions, during the field testing campaigns in Evo (May 2023) and in Stein am Rhein
(July 2024). The Ouster scans are processed to estimate the robot state at create a
pointcloud map of the environment. The state estimation was qualitatively evaluated
in various environments with various tree densities and topography. Fig. 2 and 3
respectively illustrate pointcloud maps obtained in Evo and Steim am Rhein. The
RVIZ visualization depicts the registered maps throughout the mission via CompSLAM
running onboard, at 5Hz. The two main challenges faced regarding the localization
were

1. when going too high and thus loosing visibility of the ground close to the robot,
the scan-to-map registration was taking longer than usual due to the lack of
planar geometric features, resulting in a slightly reduced LiDAR odometry
frequency;

2. when moving at significant speed, the LiDAR scans were subject to a significant
skewing (due to the drone displacement during a data acquisition step). This
issue is greatly alleviated by increasing the Ouster frequency to 20 Hz, therefore
trading off the pointcloud quality for a reduced skewing. In this setup, no
odometry breakage was recorded in the various test flights in the forest.

The results qualitatively offer stable odometry both in open and cluttered environ-
ments. Centimetric-level drift was achieved in the 170 m long mission (back and forth)
depicted in Fig. 2.

2.1.2 Detection and handling of sensor degradation and failure

CompSLAM detects LiDAR degeneracy through a threshold check on the eigenvalues of
the underlying Jacobian of the utilized pseudo-Hessian. In the nominal implementation,
such threshold is tuned manually but experience has shown that a threshold is enough
to be tuned for a class of environments and there is no need for environment-specific
tuning. Details are provided in [17].
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Figure 2: Pointcloud maps obtained from two exploration mission with RMF-Owl, in Evo,
Finland. The mapping is performed in two sites of different tree densities, relatively sparse
for the top image and very cluttered for the bottom one.

Figure 3: Pointcloud maps obtained from an exploration mission of a 40mx40m area, in Stein
am Rhein, Switzerland.
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Figure 4: Partial maps using our new method and also three others in the Fyllingsalen bicycle
tunnel at Bergen Norway. As shown all other methods make wrong estimation of scale and
drift rotationally.

When degeneracy is detected in LiDAR odometry and mapping, CompSLAM
passes through its visual-inertial estimate. As described in the abovementioned work it
is an assumption that at any given time at least LiDAR registration or visual-inertial
odometry estimation is well-posed (i.e., their data are not degraded and thus the
problem not ill-conditioned).

Nevertheless, it is still a fact that for different sensors or for substaintially different
environments heuristic tuning of such thresholds is necessary. Responding to these
limitations we have recently further looked into a more comprehensive treatment.
Specifically, we have focused on a tuning-free approach to address degeneracy-aware
LiDAR localization and mapping with attention on detecting uninformative conditions
in Iterative Closest Point (ICP) solving as they manifest due to geometries not offering
constraints across all degrees of freedom.

Generally, the Hessian matrix represents 2nd order information in the optimization
process and degeneracy occurs when certain directions in the matrix have very low
eigenvalues. Existing methods put hand-tuned thresholds. In our new work we model
signal-to-noise ratio in each direction allowing us to seamlessly identify degenerate
directions by simply calculating if the signal exceeds the noise by an order of magnitude
(no particular sensitive tuning).

Experiments We have verified the benefits of this method in an environment where
degeneracy direction is obvious and persistent, namely in a perfectly self-similar
straight long tunnel and compared against other methods of the state-of-the-art as
presented in Fig. 4. In this result we also compared against the works presented in [46,
12, 22].

2.1.3 Place recognition and localization

Within its nominal operation, CompSLAM retains a “registered cloud” which essentially
represents the collective representation of the environment so far – as estimated at
every step of point cloud registration – albeit sparsified for purposes of computational
and memory efficiency. Sparsification is achieved by applying a voxel filter on the cloud.
In the default settings, the registered cloud represents a global map representation
with maximum dimensions of 500 × 500 × 500m, a value that can be modified and
depends on the computational resources available (the value mentioned represents the
one used by our RMF flying robots).

This registered cloud is used at every mapping step of CompSLAM in that the cur-
rent point cloud is registered not only against the previous (odometry-like optimization)
but also against the maintained “global map”, i.e. the registered cloud.

At the same time, CompSLAM offers the possibility to load at the beginning of
a mission a point cloud file which then initializes the registered cloud. This allows
either to a) use a map from a previous mission (from any robot) to localize against
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the older map, and b) send such a map to another robot within the same mission (for
example when ANYmal deploys the marsupially-ferried RMF as demonstrated by our
NTNU team).

2.2 BLK2FLY
2.2.1 Multi-modal state estimation

Multi-modal sensors BLK2FLY by Leica is equipped with a single-beam dual-axis
spinning LiDAR with 360◦ vertical and 270◦ horizontal field of view (FoV), 5 global
shutter cameras with 300◦ horizontal and 180◦ FoV in total, and 5 IMUs. The LiDAR
scan ranges from 0.5m to 25m and delivers 420, 000 points/sec. The multi-modal
measurements from the LiDAR, cameras, and a single IMU are fed to the state
estimator.

State estimation The state estimator is based on OKVIS2 [23], its extended work to
fuse lidar measurements [2], and adaptive resolution dense mapping library Supereight2
[11]. The state vector is defined as

x =
[

W rT
S qW S

T
W vT bT

g bT
a

]T
, (1)

where W rS and qW S denote the position and orientation of the IMU sensor frame in
the fixed world frame, and W v describes the velocity of the IMU with respect to the
world frame. bg and ba stand for gyroscope and accelerometer biases, respectively.

The factor graph representation used in this work is shown in Fig. 5. On top of
visual, inertial and pose graph factors, that are already used in OKVIS2, two different
types of LiDAR factors are added to the graph. For every state in the real-time
optimization window, LiDAR factors with respect to the last completed submap are
added. Furthermore, map-to-map LiDAR factors are added to constrain submaps
with respect to each other by aggregating measurements between submaps.

Specifically, OKVIS2 [23] uses 2D reprojection errors ei,j,k
r of the j-th landmark in

the frame of the i-th camera at a timestamp k and its corresponding observation z̃i,j,k
r

in the image is given by

ei,j,k
r = z̃i,j,k

r − h
(
T−1

SCi
T

S
k

W W lj
)

. (2)

Hereby, h (·) denotes the camera projection. For the formulation of the IMU residuals,
OKVIS2 adopts the IMU preintegration approach in [9]. Between time steps k and n,
the IMU error is:

ek
s = x̃n

(
xk, z̃k,n

s

)
⊟ xn, (3)

where x̃n is the predicted state at an arbitrary time n as a function of the current
state xk and IMU measurements z̃k,n

s . The ⊟ performs regular subtraction except for
the quaternion (see [23]). Additionally, relative pose errors er,c

p between time steps r
and c are given by

er,c
p = er,c

p,0 +
[

S
r rS

c − S
r r̃S

c

qS
r

S
c ⊟ q̃S

r
S

c

]
. (4)

with S
r r̃S

c and q̃S
r

S
c being nominal relative position and orientations expressed in the

IMU frame F−→S . We refer the reader to [23] for a detailed derivation of the constant
er,c

p,0 as well as error Jacobians and error weights Wr,c
p .

There are two types of LiDAR residuals. In both cases, the error residuals are
formulated based on two states. On the one hand, for live residuals, these two states
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Figure 5: Optimization Factor Graph of the LiDAR-Visual-Inertial Estimator. Left: The
real-time estimator connects set of current keyframe states and non-keyframe states by IMU
errors and visual reprojection errors. It also shows the active submap keyframe and the last
completed submap keyframe. For every state in the optimization window, we can formulate
live LiDAR factors between every live frame and the last completed submap. Right: OKVIS2
connects keyframe poses through relative pose errors at a later stage. In addition to the live
LiDAR factors, measurements between frames can be aggregated and map-to-map LiDAR
factors can be added to the factor graph. Every map will be connected to the previous
submap and optionally an older submap if the geometric overlap surpasses a threshold.

are given by the current frame and the keyframe associated to the last completed
submap. On the other hand, for map-to-map residuals, both states will be submap
anchor frames. Regarding the formulation of the error residuals, however, they do not
differ. Given a completed submap anchored at keyframe pose TW S

a and a point cloud
Pb associated to another state T

W S
b , we formulate the residual for every

S
b p ∈ Pb as:

ea,b
l (S

a p) = d

σ
= L (S

a p)√
L

2
min
9 + σ2

z |∇L (S
a p)|2

, (5)

where L is a occupancy log-odd, ∇L is the gradient of L, Lmin is a configurable param-
eter for the minimum log-odd, and S

a p = T
S

a
S

b
S

b p with T
S

a
S

b = TW S
a

−1T
W S

b .
All of the aforementioned factors are combined in the overall minimisation objective:

c (x) = 1
2

∑
i

∑
k∈K

∑
j∈J (i,k)

ρ
(

ei,j,k
r

T
Wre

i,j,k
r

)
+ 1

2
∑

k∈P∪K\f

ek
s

T
Wk

s ek
s + 1

2
∑
r∈P

∑
c∈C(r)

er,c
p

T Wr,c
r er,c

p

+ 1
2

∑
k∈K

∑
p∈Lk

eC,k
l

2
+ 1

2
∑
b∈M

∑
a∈Ab

∑
p∈Lb

ea,b
l

2
. (6)

Here, the set K contains the most recent frames as well as keyframes with observations
of visible landmarks in J (i, k). P contains all pose graph frames and f denotes the
most current frame. C (r) ⊂ P is the set of all pose graph frames connected to a frame
r. Furthermore, the set Lk denotes the set of all LiDAR measurements associated to
a frame k. M is the set of all past submaps, and Ab the set of all submap frames
connected to a submap frame T

W S
b via map-to-map residuals. C denotes the last

completed submap frame.

Experiments The presented estimator is quantitatively evaluated on the HILTI
2022 SLAM Challenge benchmark [48] where the sensor configuration is similar to
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Figure 6: 3D mesh reconstructed by BLK2FLY in the field trip, Stein am Rhein (July 2024).

Approach Sensors Sequence Score
C L V I exp01 exp02 exp03 exp07 exp09 exp11 exp15 exp21

OKVIS2 [23] ✓ ✓ ✓ 8.46 8.18 0.00 0.00 0.00 0.00 0.00 0.00 16.64
OKVIS2 [23] ✓ ✓ 30.77 20.00 0.00 31.67 13.75 28.00 12.22 0.00 136.41
VILENS [39] ✓ ✓ ✓ 69.23 49.09 40.00 16.67 5.00 68.00 17.78 60.00 325.77
HKU∗

✓ ✓ ✓ ✓ 84.62 70.00 44.71 31.67 7.50 92.00 24.44 48.00 402.93
Wildcat [33] ✓ ✓ 84.62 84.55 90.59 45.00 44.38 84.00 46.67 84.00 563.79
Ours ✓ ✓ ✓ ✓ 43.08 17.27 32.35 0.00 16.25 32.00 51.11 62.00 254.06
Ours ✓ ✓ ✓ 62.31 39.09 42.35 13.33 38.12 92.00 64.44 76.00 427.65

Table 1: Evaluation scores on HILTI22 SLAM Challenge. Bold: best score, underlined:
second best; C: causal evaluation (definition in [23]); L, V, I: LiDAR, Visual and Inertial
measurements are considered; ∗based on [49].

that of BLK2FLY. The Hilti-Oxford dataset was collected using a handheld sensor
device consisting of an Alphasense five-camera module, an IMU and a 32 beam Hesai
PandarXT-32 LiDAR sensor.

For evaluating the position accuracy, sparse ground-truth with millimeter accuracy
is provided. An automatic evaluation system is available that uses a score based on
the Absolute Trajectory Error (ATE) as an evaluation metric. First, the estimated
trajectories are aligned with the sparse ground-truth using SE(3) Umeyama alignment.
For every ground-truth control point, the corresponding estimate is retrieved and
awarded a score ranging from 0 to 10 (10 for errors below 1 cm, 0 for errors above 10
cm, for more details see [48]).

Table 1 shows the final scores of our approach on all challenge sequences with
identical parameters. We report the causal as well as non-causal estimates including
a final Bundle Adjustment. We compare it to the Visual-Inertial SLAM (including
loop closures) performance of OKVIS2 [23] as a baseline. The VI baseline used all 5
cameras and the same visual frontend parameters as in the LVI case. Furthermore, we
compare it to other state-of-the-art methods that have been published an evaluated
on the benchmark including the – at the time of the challenge – winning algorithm
Wildcat [33]. It can be seen that adding LiDAR factors increases the accuracy
of OKVIS2 significantly, in the causal as well as the final optimised evaluation.
Furthermore, the proposed approach achieves state-of-the-art localization accuracy.
At the moment, a final score of 427.65 achieves rank 7 out of 53 submissions on
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the challenge leaderboard. Note that also VILENS and Wildcat performed some
form of offline batch or posegraph optimization for the reported scores. For a better
understanding, it can be stated that the reported scores here denote a mean ATE
of 1 cm (or even below) to 3 cm in the final estimates. Only for exp07 where a long
corridor with a lack of characteristic visual features or geometric features does not
achieve the same performance and results in a mean ATE of approximately 7 cm.

The presented state estimator was also tested during the field trip in Stein am
Rhein (July 2024). Onboard sensor measurements from BLK2FLY are streamed to
a laptop, and the state estimator processes the streamed measurements in real-time.
Fig. 6 qualitatively shows the 3D mesh that was reconstructed online by BLK2FLY.

2.2.2 Detection and handling of sensor degradation and failure

The state estimator in BLK2FLY fuses multi-modal sensor measurements including
IMU, cameras, and LiDAR measurements. The estimator estimator probabilistically
estimates the state by minimizing the optimization loss (6), which is a negative log-
likelihood of the probability density functions. The estimator is robust to sensor failure
in the sense that the optimization loss (6) is weighted by the inverse of measurement
covariance matrices. For instance, the LiDAR factor (5) is down-weighted, if the log-
odd gradient of the occupancy is low. Likewise, the weight for the IMU preintegration
decreases with lower-grade IMUs. This naturally maintains proper weights among
multi-modal sensors and discards measurements with high uncertainty.

The navigation stack relies on the state estimator and the mapping system which
leverages log-odds to represent the scene. Thanks to this probabilistic representation,
the planner can distinguish between occupied, free and unknown, with the latter
representing unmapped areas. This representation allows us to select planned paths
which only traverse what has been mapped as free space. This is an important safety
mechanism since classical stereo-matching algorithms can fail in outdoor scenarios and
only yield sparse depth output.

At the same time, drift is inevitable in state estimation due to sensor noise
propagating to the optimization, leading to noisily estimated poses. This noise
accumulates over time, leading to large drifts over long missions. The state estimator
community has developed drift-correcting mechanisms to address this issue, with loop-
closures being the default choice. Nonetheless, this drift correction poses a problem
for navigation since sudden "jumps" in the estimated odometry can lead to potential
crashes if the tracked trajectory is not updated correctly. To address this issue, we
propose a method called "trajectory anchoring", which elastically deforms planned
reference trajectories based on the state updates from the estimator.

Our approach, as visualized in Fig. 7, anchors each reference state to a set S of
states xs, s ∈ {1, . . . , S} estimated by OKVIS2. The reference trajectory states will
be updated as the anchor states xs update their corresponding poses. A reference
trajectory contains references (superscript “ref”) xref

j = (W rref
W Sj

, qref
W Sj

, W vref
j ), with

j ∈ {1, . . . , J} (and corresponding timestamps), which are anchored to the estimated
OKVIS2 states in S via the algorithm of k-nearest neighbours, using the distance
metric:

dj,s = ||W rref
W Sj

− W rSs
||. (7)

We associate every pair j, s with the relative transformation T SsSj
and a weight wj,s:

wj,s =
1/dj,s∑S

j=1 1/dj,s

. (8)
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Figure 7: Planned trajectory before loop-closure (left) and trajectory adaptation strategies
after loop-closure (right), with obstacles as gray disks. The adaptation strategies are: no
adaptation (purple), rigid transformation (cyan) and the proposed trajectory anchoring
(yellow). Without adaptation, the MAV flies towards its estimated pose before loop-closure
(black arrow), which is unsafe. Rigidly transforming the trajectory does not account for the
accumulated drift of each submap along it, leading to unsafe trajectories.

On state update, trajectory state positions are updated with:

W rref’
W Sj

=
S∑

s=1
wj,s TW Ss Ss

rSj
, (9)

where TW Ss
is the latest anchor pose as estimated by OKVIS2. The orientation

qref’
W Sj

is updated to the weighted average of qSsSj
, s ∈ {1 . . . S} using the previously

computed weights by following the method from [25]. We also apply the respective
orientation changes to the velocities.

2.2.3 Place recognition and localization

A common challenge in robotics is to re-localize a robot within a given map. In our
setting, this problem is especially challenging as we deploy two robot drones with
different sensor modalities: The BLK2FLY, which we use to capture large-scale, sparse,
LiDAR point clouds, and the SRL drone, which is equipped with a stereo camera and
shall re-localize with in the BLK2FLY’s maps.

One common approach in related work is to transform the point clouds into range
images by rendering them from a specific perspective. However, this approach comes
with two drawbacks: Firstly, by pointing the virtual camera into one direction only,
one loses much of the point cloud’s information and sacrifices a key advantage of
the LiDAR sensor. Furthermore, projecting the 3d geometry into a 2d image loses
much of the rich information provided by the LiDAR. An alternative method is to
generate a 3D representation from the stereo image stream and subsequently register
this representation with existing LiDAR maps. This approach, showcased in SOLVR
[19], achieves state-of-the-art performance in LiDAR-Visual re-localization, advancing
the robustness and accuracy of multi-modal registration.

The proposed method focuses on generating local 3D maps—so called submaps—
from the stereo image stream and registering it against a database of LiDAR point
clouds (Fig. 8). The submaps are generated using the same strategies as for the

12



CL4-2021-DIGITAL-EMERGING-01: 101070405 DigiForest Deliverable D3.2

state estimator, making SOLVR a streamlined approach cross-modal place recognition
with the generated data during missions with either LiDAR and stereo cameras to
obtain depth input. To extract metric depth information from the stereo images,
SOLVR utilizes the learning-based depth prediction network Unimatch [43]. The
camera’s odometry, generated through the visual-inertial odometry and a SLAM
system OKVIS2 [23], provides the necessary trajectory for projection. A probabilistic
occupancy mapping system, supereight2 [36], is utilized to mitigate the influence of
noise and outliers by employing Bayesian updates to integrate depth measurements.

Submap
Generation

Database

Store

Query

LiDAR Scans

Camera Images

Query Submap

Retrieved Scan Registration

Figure 8: SOLVR constructs 3D submaps from a stream of input camera images in order to
align the camera and LiDAR sensor modalities. The submap is used to retrieve a corresponding
place from a database of LiDAR scans, at which point the submap and scan are registered in
order to estimate the current sensor pose.

The query process comprises two steps: Querying the stereo-image-based submap
in the database for a matching LiDAR point cloud (place recognition) and finding
the relative pose between the two maps (registration). To perform place recognition,
SOLVR extracts global feature embeddings from both 3D maps, which are 256-
dimensional vectors generated by two sparse convolutional network, each tuned for one
sensor modality. SOLVR retrieves the most similar place from the LiDAR database
by comparing the global feature vector of the queried submap with the stored LiDAR-
based embeddings.

For registration, SOLVR uses a secondary sparse convolutional network to extract
local keypoint features and their corresponding 3D coordinates from both submap
and LiDAR scan. These local features are then matched between the two maps to
find correspondences. To deal with outliers during matching, SOLVR introduces
a geometric consistency-based approach, which employs the first eigenvector of a
feature correspondence matrix to weight contributions of each correspondence. Using
these weights and the keypoint coordinates, the final 6D pose is computed using
least-squares optimization. The paper shows that with this geometric consistency
check, registrations are more successful—especially for low inlier-ratios—than with
traditional RANSAC (Tab. 3).

SOLVR was evaluated on the KITTI and KITTI360 datasets. In LiDAR-Visual
place recognition, SOLVR outperformed all state-of-the-art methods ScanContext [18],
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Method
KITTI-00* KITTI360-00 KITTI360-09

5 m 20 m 5 m 20 m 5 m 20 m
R@1↑ R@5↑ R@1↑ R@5↑ R@1↑ R@5↑ R@1↑ R@5↑ R@1↑ R@5↑ R@1↑ R@5↑

ScanContext† [18] 7.6 8.0 7.7 9.4 7.5 7.9 9.4 10.5 9.0 9.8 10.0 11.5
EgoNN† [20] 49.1 60.0 54.8 68.7 40.2 64.4 73.2 84.2 47.9 64.3 58.7 70.7
LIPLoc [35] 46.6 74.3 52.1 76.5 1.94 5.8 11.0 21.0 21.7 33.4 27.0 41.6
C2L-PR [44] 71.3 84.2 78.0 88.4 – – – – – – – –
SOLVR (Ours) 87.9 94.0 96.4 96.8 58.1 74.8 76.3 84.6 70.2 85.5 82.2 90.3

Table 2: LiDAR-Visual Place Recognition results on the KITTI and KITTI360 datasets. †

Indicates methods originally proposed for unimodal LiDAR tasks that have been adapted to
LiDAR-Visual by using our generated submaps as queries. * Indicates sequences where the
OKVIS2 [23] odometry was used to calculate the camera trajectory for submap construction.

Method KITTI-09* KITTI-10*
Acc.% RRE (◦) RTE (m) Acc.% RRE (◦) RTE (m)

CorrI2P [34] 8.1 13.59 11.11 9.0 9.44 10.15
VP2P [50] 6.9 11.35 10.43 7.6 8.16 10.00
EgoNN† [20] 50.7 22.30 7.35 57.1 27.86 6.59
SOLVR-RANSAC 81.1 11.77 3.46 80.1 13.83 3.46
SOLVR (Ours) 98.0 2.12 0.74 95.4 3.60 0.98

Table 3: 6-DoF LiDAR-Visual registration results for the Comprehensive evaluation setup on
KITTI-09 and 10

EgoNN [20], LIPLoc [35], and C2L-PR [44] as can be seen in Tab. 2.
Moreover, SOLVR’s use of geometric consistency matrices for keypoint matching

improved registration accuracy manifests in superior registration performance compared
to the baseline methods CorrI2P [34], VP2P [50], and EgoNN (Tab. 3). For example,
in the comprehensive evaluation setup, SOLVR demonstrated an accuracy of 98 %
for 6-DoF registration on KITTI-00 compared to 81.1 % of the next best baseline,
reducing the mean relative rotation error to 2.12° (from 11.35°).

The authors back up the significantly better registration performance by showing
that different to other base line methods, where performance degrades when the image
and LiDAR pose don’t align, SOLVR maintains good performance even when query
and candidate views are far apart (Fig. 9).

2.3 SRL drone
2.3.1 Multi-modal state estimation

Multi-modal sensors Smart Robotics Lab (SRL) drone built by SRL at TUM is a
lightweight flying platform with only a visual-inertial sensor (Intel RealSense D455 [13]).
The sensor outputs stereo images with 90×65◦ FoV and depth images with 2% depth
accuracy within 4 m. Also, the visual-inertial sensor equips with a low-cost IMU,
Bosch BMI055. We use depth from the sensor or deep neural networks [43, 42] for the
presented estimator.

State estimation The state estimator is based on OKVIS2 [23] and its extension
to depth networks [14]. The state is defined as in (1) and the optimization loss
in the factor graph is same as (6). However, noisy depth measurements should be
properly weighted for downstream tasks in contrast to precise LiDAR point clouds. The
presented estimator is fully uncertainty-aware in the sense that occupancy integration
and the visual-inertial factor graph are properly weighted by the estimated uncertainty
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Figure 9: 6-DoF LiDAR-Visual Registration accuracy versus distance between query and
candidate pairs on sequences KITTI-09 and 10.

of depth fusion. We optimally fuse depths from stereo and MVS networks based on
their predicted uncertainties motivated by the complementary characteristics of small
and large baselines from static and motion stereo.

It is pivotal to obtain a reliable dense depth as well as the associated uncertainty
for our downstream tasks. Our key idea is to fuse static and motion stereo, which are
complementary to each other — static stereo provides a reliable small baseline even
when stationary, while motion stereo potentially brings a large baseline, depending on
the camera motion. Our method does not depend on a specific network, but we found
that Unimatch [43] and the MVS network [41] work well in real-world scenes. However,
the previous networks only predict disparity or depth without any uncertainties.
Therefore, we augment the base architecture with an uncertainty decoder and adopt
the Laplacian loss function for (aleatoric) uncertainty learning. Specifically, our stereo
network loss function is

Lst(θ) = Lu(θ) + L∇ux
(θ) + L∇uy

(θ), (10)

where θ is the network weights, and u stands for the disparity. The disparity loss Lu,
modeled in the Laplacian distribution as in [16, 30], is defined as

Lu(θ) =
∑
i∈T

∣∣ui − ugti

∣∣
σui

+ log σui
, (11)

where T is a training set including pairs of stereo images and the ground-truth disparity.
We additionally add the gradient loss L∇u for sharper uncertainty output, which is
analogously defined as Lu. The gradient uncertainty along the horizontal and vertical
directions is derived from the disparity uncertainty as

σ∇ux
=

√
σ2

u(x + 1, y) + σ2
u(x − 1, y),

σ∇uy
=

√
σ2

u(x, y + 1) + σ2
u(x, y − 1). (12)
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Side view Side view

Exploration with submap alignment Exploration without submap alignment

Figure 10: 3D mesh reconstructed onboard by SRL drone in the field trip, Stein am Rhein in
July 2024. (Left) The first and the last submaps are well-aligned due to submap alignment
factors in the factor graph optimization. (Right) The submaps are geometrically inconsistent
without the submap alignment factor.

We propagate the uncertainty from the disparity to the depth with linearization,

d̂st = fcb

u
, σst = fcb

u2 σu, (13)

where fc is the rectified focal length, b is the stereo baseline.
Likewise, we modify the loss function of the MVS network [41]

Lmvs(ϕ) =
∑
i∈T

∣∣log di − log dgti

∣∣
σli

+ log σli
, (14)

where the network learns log-depth uncertainty. We transform the log-depth to a
depth with a linearized model,

d̂mvs = exp (log di), σmvs = d̂mvsσl. (15)

Given the pixel-wise estimates from the networks (d̂st, σst), (d̂mvs, σmvs) and with
the assumption that two estimates are independent, we can optimally fuse two depth
estimates [5],

d̂fuse = σ2
fuse

(
σ−2

st d̂st + σ−2
mvsd̂mvs

)
,

σ2
fuse =

(
σ−2

st + σ−2
mvs

)−1
. (16)

Fused depth naturally maintains the optimal depth based on uncertainty-aware fusion.

Experiments The presented estimator is quantitatively evaluated in the EuRoC
dataset [3]. This dataset provides stereo images and IMU measurements recorded by
a drone, the ground-truth trajectory and point clouds of the Vicon room in mm-level
accuracy [3]. We use the stereo pair for our stereo network and left images for our
MVS network. Table 4 summarizes ATE where all competitors also use a stereo and
inertial configuration. Our method improves the baseline, OKVIS2 [23] by adding
occupancy-to-point factors in causal evaluation. We obtained the same accuracy
on average when compared to the baseline in non-causal evaluation. This indicates
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Table 4: Absolute Trajectory Error [m] in the EuRoC dataset
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Causal Non-causal
MH01 0.166 0.034 0.042 0.034 0.036 0.021 0.019
MH02 0.152 0.029 0.046 0.031 0.033 0.020 0.019
MH03 0.125 0.039 0.081 0.037 0.035 0.032 0.029
MH04 0.280 0.065 0.072 0.072 0.051 0.059 0.071
MH05 0.284 0.087 0.069 0.081 0.082 0.061 0.066
V101 0.076 0.037 0.059 0.035 0.038 0.035 0.035
V102 0.069 0.031 0.034 0.028 0.014 0.014 0.014
V103 0.114 0.035 0.028 0.029 0.024 0.020 0.021
V201 0.066 0.039 0.040 0.033 0.032 0.023 0.024
V202 0.091 0.030 0.039 0.028 0.014 0.019 0.016
V203 0.096 0.041 0.055 0.041 0.024 0.027 0.022
Avg 0.138 0.043 0.051 0.041 0.035 0.030 0.030
1 Results taken from [4].
2 Results obtained ourselves.
3 Results taken from the paper.

that the depth fusion could not achieve 3 cm-level accuracy, which is already quite
accurate. On the other hand, our approach outperforms state-of-the-art methods
with nontrivial margins. Since our method tightly couples localization and volumetric
mapping, we also evaluate the mapping accuracy in Table 5. For fair comparison
to Simplemapping [41] in a monocular-inertial set up, we implement Ours-Mono
where only left images are used without the stereo network. The proposed method
achieves the highest accuracy and completeness, while Ours-Mono also outperforms
the competitor.

The presented state estimator was employed during the field trip in Stein am Rhein
(July 2024). Fig. 10 qualitatively shows reconstructed 3D mesh onboard in SRL drone
during exploration. To be specific, depth measurements from RealSense were used
in this experiment. This highlights the effectiveness of the submap alignment factor
in the factor graph optimization. By adding the submap alignment factors in the
optimization, a globally consistent map was estimated as in Fig. 10(left), while the two
submaps were not well-aligned without the submap alignment factor in Fig. 10(right).

2.3.2 Detection and handling of sensor degradation and failure

The state estimator in SRL drone fuses multi-modal sensor measurements including
IMU and camera measurements and shares the same architecture as in BLK2FLY
where depth measurements replace LiDAR point clouds. For instance, the depth factor
(5) is down-weighted, if the depth uncertainty is high or the log-odd gradient of the
occupancy is low. Furthermore, the navigation stack is sensor-agnostic where the
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Table 5: Mesh accuracy [m] without threshold and completeness [%] with 0.2m threshold in
the EuRoC dataset
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Accuracy Completeness
V101 0.176 0.076 0.042 40.58 41.74 44.28
V102 0.123 0.073 0.041 55.07 54.96 58.38
V103 0.161 0.093 0.048 47.74 55.92 68.48
V201 0.155 0.090 0.072 41.93 39.62 43.64
V202 0.156 0.073 0.069 56.37 54.79 57.66
V203 0.090 0.089 0.072 62.58 58.42 59.96
Avg 0.144 0.082 0.057 50.71 50.91 55.40
1 Results obtained ourselves with the same metric.

software is compatible with depth as well as LiDAR sensors. For details, please refer
to Sec. 2.2.2.

2.3.3 Place recognition and localization

A lightweight SRL drone, which is equipped with a stereo camera, would re-localize in
the sparse LiDAR point clouds. Specifically, a submap built by depth measurements
from a stereo camera is registered in the corresponding LiDAR scan by retrieving a
corresponding place from the LiDAR scan database. This multi-modal relocalization
works with BLK2FLY as explained in Sec. 2.2.3. For further details, please refer to
Sec. 2.2.3.
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Figure 11: VILENS factor graph structure. The factors are: prior (black), visual (yellow),
lidar planes (green), lidar lines (red), preintegrated IMU (orange), preintegrated velocity
(from leg kinematics, blue), and lidar odometry (from ICP registration, magenta). State
nodes are white, while landmarks are grey.

3 ANYmal – legged robot
In this section, we present VILENS (Visual Inertial Lidar Legged Navigation System),
an odometry system for legged robots based on factor graphs. The key novelty is
the tight fusion of four different sensor modalities to achieve reliable operation when
the individual sensors would otherwise produce degenerate estimation. To minimize
leg odometry drift, we extend the robot’s state with a linear velocity bias term
which is estimated online. This bias is observable because of the tight fusion of this
preintegrated velocity factor with vision, lidar, and IMU factors.

3.1 Multi-modal state estimation
Multi-modal sensors Most legged robots are equipped with a high frequency (>250 Hz)
proprioceptive state estimator for control and local mapping purposes. However, de-
formable terrain such as forest floors, leg flexibility, and foot slippage can degrade
estimation performance up to the point where local terrain reconstruction is unusable
and multi-step trajectories cannot be executed, even over short ranges. This problem
is more evident when a robot is moving dynamically, and can be the limiting factor
when crossing rough terrain.

In our work, we fuse all four sensor modalities (IMU, kinematics, lidar, camera) in a
tightly coupled fashion. The quadruped robot has 12 active Degrees-of-Freedom (DoF)
and is equipped with a stereo camera, an IMU, joint encoders and torque sensors. The
goal is to estimate the history of the robot’s base link pose and its velocity (linear and
angular) over time.

The state estimation architecture is shown in Fig. 12. Four parallel threads
execute the following operations: preintegration of the IMU factor, preintegration
of the velocity factor, stereo feature tracking, and optimization. The factors are
illustrated in Fig. 11.

This approach outputs 400 Hz velocity and pose estimates from the preintegration
thread for use by the robot’s control system, and a 30 Hz output from the factor-graph
optimization thread for use by local mapping. When a new keyframe is processed, the
preintegrated measurements and tracked landmarks are collected by the optimization
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Figure 12: The VILENS architecture with preintegrated velocity bias estimation.

thread, while the other threads process the next set of measurements.
The factor graph optimization is implemented using the efficient incremental

optimization solver iSAM2 [15], which is part of the GTSAM library [6]. We limit the
number of states in the graph to 500 to keep the optimization time approximately
constant.

Visual Feature Tracking

We detect features using the FAST corner detector, and track them between successive
frames using the KLT feature tracker. Outliers are rejected using a RANSAC-based
rejection method. Thanks to the parallel architecture and incremental optimization,
all frames are used as keyframes, achieving 30 Hz nominal output.

Zero Velocity Update Factors

To limit drift and factor graph growth when the robot is stationary, we enforce zero
velocity updates on the different sensor modalities (camera, IMU, and leg odometry).
If two out of three modalities report no motion, a zero velocity constraint factor is
added to the graph. The IMU and leg odometry threads report zero velocity when
position (rotation) is less than 0.1 mm (0.5◦) between two keyframes. The image
thread reports zero velocity when less than 0.5 pixels displacement of all the features
is detected over the same period.

Experiments We deploy our state estimation stack – VILENS – running onboard
the ANYmal robot. The limited on-board computation is shared with other processes
running on the robot, including control, terrain mapping, and sensor drivers. Con-
structing an accurate local terrain map around the robot is crucial for perceptive
locomotion and path planning. Locomotion controllers plan footstep placements on
these maps.

Fig. 13 shows the pipeline used for the terrain mapping with VILENS. The inputs
to the terrain mapping module [7] are the VILENS state estimate, and the point clouds
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Figure 13: Terrain Mapping Pipeline: The VILENS state estimator produces a high frequency,
low drift state estimate, for the terrain mapping module [7]. This local terrain map can then
be used by other modules, such as perceptive motion planning and control [10], or local path
planning for obstacle avoidance [26].

from several downward-facing depth cameras on the robot’s body. These cameras are
not the same as the ones used for state estimation and are not triggered at the same
time. Therefore, accurate terrain mapping depends on a smooth, accurate, and high
frequency state estimate to avoid interpolation errors.

From our experience, terrain mapping frequencies of ≥15 Hz are required for
dynamic locomotion over rough terrain. This means that registration-based algorithms
with a low frequency output (such as ICP or LOAM) are not suitable for this purpose.

3.2 Detection and handling of sensor degradation and failure
Handling Sensor Degradation

Multi-sensor SLAM systems, such as those used in the ANYmal legged robot, are
susceptible to sensor degradation due to several factors. Below are some common
sources of sensor degradation:

• Unreliable/interruptive GNSS signal coverage under-canopy: In dense forested
environments, GNSS signals are often weak or entirely blocked due to thick
vegetation. This leads to unreliable position estimates or total loss of signal.

• Low-light conditions and sudden changes in exposure: When the robot transitions
from dense under-canopy regions to open areas, there can be a significant change
in lighting conditions. Sudden exposure changes or low-light scenarios effect
result in poor image quality and unreliable visual feature extraction.

• Environmental disturbances: Wind-induced movement of trees and branches can
cause small but continuous changes in the surrounding environment. This can
create difficulties in sensor data consistency, particularly for LiDAR and visual
sensors that rely on environmental features for tracking and mapping.

Strategies to overcome sensor degradation

To ensure the robustness of state-estimation systems under these conditions, the
following strategies are employed:
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To mitigate the effects of sensor degradation and failures, the ANYmal’s state-
estimation system relies on multiple sensor modalities to provide redundancy. VILENS
(described in Sec. 3.1) integrates multiple sensor types, including IMU, LiDAR, Camera,
and leg odometry. The multi-sensor fusion approach provides robustness by ensuring
that the failure or degradation of any single sensor does not lead to catastrophic
localization or mapping failures.

The strategies to handle sensor degradation are based on a two-stage approach:
outlier rejection and adaptive re-weighting of measurements.

• Outlier Rejection: The first stage in the pipeline is designed to filter out
low-quality measurements before they are passed to the SLAM optimization
algorithm. For each sensor type, specific criteria are used to identify degraded
or outlier data:

– Camera-based Visual Features: For visual sensors, the system monitors
the quality of feature extraction by checking both the number and the
distribution of visual features in each frame. If the number of features
falls below a pre-set threshold, indicating issues like blurring, poor lighting,
or low-texture scenes, the measurements are classified as outliers and are
discarded from the SLAM process.

– LiDAR Data: In environments where tree branches are swaying due to wind
or where there are other moving elements in the scene, LiDAR measurements
may become unreliable. To handle this, a threshold-based heuristic is used
to reject inconsistent or highly variable point clouds.

By rejecting low-quality data early, the system prevents poor sensor readings from
corrupting the overall SLAM estimation process, thus improving the reliability
of the final state estimate.

• Adaptive re-weighting: In the second stage, the system adjusts the weight
of each sensor measurement in the SLAM optimization process, which is often
modeled as a factor-graph. Each sensor’s contribution to the state estimation
is weighted based on the quality of its current measurements. This is done by
modeling the covariance of each sensor’s data.

– Dynamic Covariance Scaling: For each sensor, the covariance associated
with its measurements is dynamically adjusted based on the observed noise
or error characteristics. For example, in the case of degraded GNSS signals
under dense canopy, the system automatically increases the covariance,
reducing its contribution to the final pose estimate, while giving more
weight to the more reliable sensors like IMU or leg odometry.

This combination of outlier rejection and adaptive re-weighting ensures that the
SLAM system can continue to operate effectively even in challenging environments
where one or more sensors may be temporarily degraded or completely fail. By fusing
information from diverse modalities, such as IMU for short-term stability, LiDAR and
visual features for large-scale localization, and leg odometry for reliable proprioception,
the ANYmal robot is able to maintain accurate localization and mapping despite
sensor degradations

3.3 Place recognition and localization
In this section, we describe the place recognition system and its integration with
the localization stack on the ANYmal robot. The system was developed with focus
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Figure 14: Place recognition pipeline. VILENS provides a continuous odometry estimate at 10
Hz. Pose graph SLAM is used to optimize poses after successful loop closure verification. The
place recognition module consists of three steps: loop candidate proposal, coarse registration,
and fine registration. We verify the loop candidates at the global descriptor-level, local feature
consistency -level, and finally at the fine registration level. A loop candidate is integrated in
the pose graph only if it passes these three stages.

on being generally useful for multiple platforms – based around LiDAR data. We
deployed the same place recognition system for the backpack-based mapping system
in addition to the ANYmal platform as well.

The overall system infrastructure is shown in Fig. 14. For state estimation, we
use a LiDAR-inertial odometry system—VILENS [40]—, in conjunction with a pose
graph SLAM framework, described previously in Sec. 3.1. We implemented a place
recognition & verification server, which not only provides a common interface for
the different LiDAR-based place recognition models but also multi-stage verification
procedures for its use in the different settings.

In the following sections, we introduce the technical details of the place recognition
server, and present its integration to state-estimation stack.

Step 1: Loop candidate proposals

Initial loop closure candidates are obtained by comparing global descriptors extracted
from the pose graph scans as well as the query scan. We evaluates four state-of-the-art
methods for descriptor extraction: the learning-based Logg3dNet [37] and EgoNN [21],
as well as the handcrafted ScanContext [18] and STD [45].

Given the reference pose graph and the query scan, we compute a database of
descriptors using all the scans in the pose graph, given by the matrix D ∈ RN×M ,
where N is the number of poses in the pose graph and M the descriptor dimension.
Additionally, we compute the descriptor for the query scan, denoted by dq ∈ RM×1.

To obtain candidates, we compute the pairwise distances of the scan to the database
using the cosine similarity:

S = D · dq ∈ RN×1 (17)

The vector of descriptor distances S is sorted by increasing distance, and only the
top-k candidates are selecting using a distance threshold τs, which is set by the F1-max
score from testing data.
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Figure 15: The cycle consistency check uses the relative transformation estimates and loop
candidates between four nodes ni, nj , nk, nl to verify the validity of a loop.

Step 2: Coarse Registration

Next, we estimate the relative 6DoF transformation that expresses the pose associated
to the query scan w.r.t each candidate node, which we denote ∆T. For the handcrafted
methods (ScanContext and STD), the relative transformation is directly an output
of descriptor computation. For the learning-based approaches, we use the point-wise
feature vectors outputted in the forward pass of Logg3dNet and EgoNN for feature
matching, which is used in a RANSAC-based pose estimation scheme [8] to estimate
the relative transformation.

We additionally verify the inlier matches using the Spectral Geometric Verifica-
tion [38] method, which provides an additional measure of the quality of the feature
matches.

Lastly, we carry out a cycle consistency verification (Fig. 15), which checks whether
the relative transformations between pairs of nodes are mutually consistent with one
another. Given four pose graph nodes ni, nj , nk, nl, we test how close the following
equivalence holds:

∆Ti,j ∆Tj,k ∆Tk,l ∆Tl,i ≈ I4×4 (18)

If this difference is more than a threshold of 10 cm or 1◦ we reject the candidate. This
is shown in Fig. 15.

Step 3: Fine Registration

Finally, we employ the Iterative Closest Point (ICP) algorithm [1] for fine registration
of the proposed candidates. We use the libpointmatcher implementation [31], which
also provides information on the quality of the registration, such as the proportion
inlier points and the residual error of each point to access the alignment.

3.3.1 Integration with the State-Estimation and SLAM System

The first task we consider is LiDAR-based online SLAM. Our implementation defines
it as an incremental pose graph estimation problem (see Fig. 16,(a)). Consider
consecutive loop closures at nodes ni, ni+1 and nj , nj+1. Edges are provided by relative
estimates from our LiDAR-inertial odometry system (odometry factors, denoted by
∆Ti,i+1, ∆Tj,j+1), and verified loop closure candidates from our place recognition
server (loop closure factors, ∆Ti+1,j , ∆Ti,j+1).

For the cycle consistency verification described in Sec. 3.3, we consider the relative
transformation change between consecutive loop closure candidates w.r.t the pose
graph poses and the odometry change (Fig. 15 i, j, k, l, replaced by i, i + 1, j, j + 1).

24



CL4-2021-DIGITAL-EMERGING-01: 101070405 DigiForest Deliverable D3.2

Intra-mission Loop 
Closure Factor

Inter-mission Loop 
Closure Factor

Odometry Factor

(a)

(b)

Figure 16: Pose graph formulation used for (a) online, and (b) offline multi-mission SLAM
optimization. Each node ni has a 6DOF pose xi, which correspond to the main variables
estimated on each case.

Again, a cycle consistency needs to be satisfied:

∆Ti,i+1 ∆Ti+1,j ∆Tj,j+1 ∆T−1
i,j+1 ≈ I4×4 (19)

3.3.2 Evaluating Place Recognition Descriptors

Our evaluation included four distinct test sites featuring varying forest compositions
captured by two different LiDARs. We used a Hesai XT32 LiDAR—50 m effective
range and 30◦ narrow field of view and a Hesai QT64—30 m range, 100◦ wide field of
view.

• Evo (Finland), Hesai XT-32, characterized by tall, a mix of broad-leaf and
coniferous trees.

• Stein am Rhein (Switzerland), Hesai XT-32, thinned coniferous trees, open
canopy, and flat ground.

• Wytham Woods (UK), Hesai QT-64, a very dense forest with cluttered trees
with mixed species and ground vegetation, as well as uneven terrain (valleys and
hills).

• Forest of Dean (UK), Hesai QT-64, less dense broad-leaf, oak trees and flat
grounds.

In these experiments, we evaluated the descriptors of four different place recognition
models (Logg3dNet, EgoNN, ScanContext, STD) focusing on their ability to accurately
capture loop-candidates in forest environments. Logg3dNet and EgoNN models
are learning-based methods and were pre-trained on the Wild-Places dataset. Our
experiment measured the precision-recall curves to assess how well each model detected
correct loop candidates within a reasonable distance threshold (here set to 10 m). We
measured this at various descriptor distance thresholds τs in four different forests.

From our obtained precision-recall curves Fig. 17, it is evident that Logg3dNet
consistently outperforms the other models across the four different forests. Particularly,
on the Evo and Stein am Rhein datasets, Logg3dNet showed the best performance both
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Figure 17: Precision-recall curves obtained for Logg3dNet, STD, EgoNN and Scan Context
in our four dense forest datasets. Only the top-1 candidate within 10 m of the ground truth
position is regarded as a true positive candidate.

in terms of precision and recall, without experiencing any drastic drops in precision.
In contrast, ScanContext demonstrated a significant decrease in precision, attributed
to its dependency on the vertical field of view of the input scan. In more challenging
scenarios, such as Wytham Woods, handcrafted models showed a notable decline
in performance. However, Logg3dNet remained at the top, successfully retrieving a
substantial portion of correct loop-candidates, achieving a 70% precision at a 50%
recall rate.

3.3.3 Evaluating the Online Place Recognition Pipeline

In this experiment, we investigated the online place recognition capability of our
system, wherein loop closures from the place recognition module are integrated into
the SLAM system. The database D, is incrementally built as the robot moves through
the environment. When matching, we exclude the most recent 30 seconds of data to
prevent loop closures with immediately recent measurements.

Fig. 18 presents an illustrative example of online SLAM performance on the Evo
dataset, depicting the sets of loop candidates after each verification step. Initially,
many loop closure candidates are proposed (shown in blue) under a descriptor matching
threshold τs of F1-max score. Loop closures beyond a conservative estimate of 20 m
are rejected using the odometry information. After this, a subset of loop closure
candidates are identified using RANSAC matching (highlighted in orange), and finally,
a refined set of loop closures that pass the consistency and ICP steps are integrated
into the SLAM framework. Final loop closures (shown in red) are one of ICP verified
loop candidates by checking pose graph density to avoid over-constraining the pose
graph.
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Figure 18: Online place recognition on a sequence of the Evo dataset. Bold red lines show
the loop closures integrated into the SLAM system, successfully identified up to distance of
17 m within dense forest areas.

Figure 19: Loop closures distribution by distance and angle at various stages of the pipeline
on Evo dataset. Initial candidates based on descriptor distance are shown in blue. Candidates
beyond 20 m are rejected using odometry information. Candidates within 20 m undergo
RANSAC pre-registration with additional verification steps of SGV[38] and pairwise checks
(Yellow). Then these candidates are refined using ICP fine-registration (Red), and final loop
closures in the pose graph after checking constraints density in pose graph (red with black
outlined).

Next, we conducted a comprehensive analysis of loop closure statistics based on
distance and viewpoint angles, shown Fig. 19. Our findings show that the system
can successfully identify loop closure pairs across considerable baseline distances
(10 m to 20 m). We observed that despite the large baseline, a significant portion of
initial candidates can be registered using RANSAC-based matching, indicating that
the correspondences are accurate. However, the proportion of candidates verified
by ICP decreases as the distance between scans increases. Specifically, when scans
are 10 m apart, ∼60 % of RANSAC-registered candidates are successfully verified by
ICP, and when 15 m apart, only ∼40 % remains verified. This decrease is due to
the diminishing overlap ratio between corresponding scans with increasing distance,
making convergence of ICP challenging.

Similarly, in terms of viewpoint orientation difference, we observed that a large
proportion of the loop candidates up to 90◦ difference are verified both at the RANSAC-
registration and ICP-based checks. However, we observed a degradation of performance
over 90◦, which can be attributed to the occlusions in the scans present at large
orientation differences. Nonetheless, despite this degradation, the number of final loop
closures integrated into the SLAM system proved to be sufficient for correcting the
drift.
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4 SAHA – harvester

4.1 Multi-modal state estimation
On the autonomous harvester, SAHA, we implemented the Graph-based Multi-Sensor
Fusion (Graph-MSF) method. The method is designed for robust and consistent
localization of large-scale autonomous construction, farming, and forestry robots,
specifically targeting real-world operational environments. In such large-scale outdoor
operations, GNSS usually provides a rough reference for global localization, although
its quality might suffer from noise and dropouts caused by the canopy in a forest
environment. Therefore, a major challenge in the large-scale autonomous operation of
autonomous forest machines is maintaining precise localization across different terrains
and under sensor failures or dropouts. The Graph-MSF method addresses these issues
by combining filtering and smoothing techniques within a graph-based framework,
allowing for accurate pose estimation even when certain sensors (e.g., GNSS) become
unreliable. Graph-MSF has been verified on walking excavators [27], where it showed
accurate and consistent localization. In DigiForest, we implemented it on SAHA, which
has similar sensor modalities, such as IMU, LiDAR, and GNSS. Instead of performing
place recognition with onboard sensors, we mainly rely on GNSS for globally consistent
localization when SAHA drives on forest roads. Once SAHA enters the dense forests
and GNSS becomes unreliable, local pose estimations with LiDAR odometry can be
used. Through extensive experiments in forest environments, the algorithm’s great
robustness and adaptability to different environments are demonstrated.

Graph-MSF employs a dual-graph structure with the following key elements:

• Graph-based prediction-update loop: Integrates both filtering and optimization-
based methods.

• Asynchronous sensor fusion: Handles different update rates and sensor dropouts
using a flexible framework.

• Dual-graph design: Allows for smooth transitions between global and local pose
estimates during sensor outages (e.g., GNSS dropouts).

This method focuses on maximizing robustness during sensor failures while minimizing
computational overhead, providing real-time localization suitable for control tasks like
chassis balancing and navigation.

4.1.1 Mathematical Formulation

The localization problem is framed as an optimization task over sensor data, which is
processed in two steps:

1. Prediction: Incorporating incoming IMU measurements to propagate the
current state estimates.

2. Update: Triggering optimization using the factor graph when additional sensor
data (GNSS or LiDAR) arrives.

State Definition The robot state at time ti, denoted as xi, is composed of:

xi = [Ixi
, T W O

i , Bxi
]

Where:
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• Ixi
: IMU state with respect to the world frame.

• T W O
i : Transformation between the local odometry frame O and the world frame

W .

• Bxi
: Base frame state with respect to O.

The method uses a factor graph approach, where IMU measurements are incorpo-
rated as high-frequency inputs, providing low-latency state estimates.

Measurement Model

• IMU factors: Formed by integrating linear acceleration and angular velocity
measurements.

rIIi
= [r∆Ri

, r∆vi
, r∆pi

]

• GNSS measurements: When GNSS is available, it provides global positioning
information integrated into the factor graph as GNSS factors.

rGGi
= pW

W I − p̃W
W I

• LiDAR measurements: LiDAR is integrated as either an odometry factor (for
relative pose) or a pseudo-global factor when GNSS data is unavailable.

4.1.2 Dual-Graph Design

The dual-graph structure is central to Graph-MSF’s ability to handle sensor failures:

• Main Graph: Used when GNSS data is available. LiDAR measurements are
incorporated as odometry factors, and GNSS ensures global pose accuracy.

• Fallback Graph: Activated when GNSS fails. The LiDAR measurements are
treated as pseudo-global factors to maintain local consistency and avoid drift in
state estimation.

During GNSS outages, the fallback graph continues to estimate the pose using
IMU and LiDAR, preserving smooth localization. When GNSS becomes available
again, the main graph resumes, and any accumulated drift is corrected.

4.1.3 Prediction-Update Loop

Graph-MSF introduces a prediction-update loop that ensures:

• Fast updates: IMU measurements are processed without triggering a full graph
optimization, thus maintaining real-time operation.

• Optimization updates: The graph optimization is triggered only when addi-
tional (delayed) sensor measurements such as GNSS or LiDAR are available.

This hybrid approach balances the need for fast, low-latency state estimation with
the global consistency provided by graph-based smoothing.
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4.2 Detection and handling of sensor degradation and failure
A critical feature of the Graph-MSF method is its ability to maintain accurate and
consistent localization even in the presence of sensor degradation and failure, particu-
larly with GNSS (Global Navigation Satellite System) signals. Forest environments
are often subject to conditions where sensors can experience temporary degradation
or failure due to dense tree cover. Graph-MSF is designed to effectively manage these
challenges by implementing a robust multi-sensor fusion approach.

Dual-Graph Architecture for Robustness The key to addressing sensor degradation
in Graph-MSF lies in its dual-graph architecture, which enables smooth transitions
between global and local localization estimates depending on the availability and
reliability of sensor inputs. The method introduces two distinct factor graphs:

• Main Graph: This graph processes all sensor inputs when GNSS data is
available and reliable. It uses GNSS for global positioning and incorporates
LiDAR measurements as relative odometry factors, ensuring accurate global
localization.

• Fallback Graph: When GNSS measurements become unreliable or unavailable
due to sensor degradation, the system switches to the fallback graph. In this
mode, the LiDAR data is treated as a pseudo-global factor, allowing the system
to continue generating consistent local pose estimates. This fallback graph is
crucial for maintaining continuity in localization during GNSS dropouts.

During periods of GNSS failure, the fallback graph preserves localization consistency
by using the onboard LiDAR and IMU sensors. Once GNSS signals are restored, the
system seamlessly transitions back to the main graph, correcting any accumulated drift
that may have occurred during the GNSS outage. The smooth recovery is ensured by
estimating the relative transformation between the world and odometry frames, thus
avoiding any sudden jumps in the robot’s pose estimation that could disrupt control
tasks.

Outlier Rejection and Sensor Data Reliability Graph-MSF includes additional
mechanisms to detect and handle sensor data degradation. GNSS outliers, which can
result from poor satellite coverage or interference of dense tree canopy, are identified
using the covariance estimates provided by the GNSS system. Only transformations
that meet strict thresholds for velocity and measurement consistency are accepted.

The system employs the following criteria to reject outlier data:

• Covariance thresholding: Modern RTK GNSS sensors provide covariance
estimates that are directly used to assess the reliability of GNSS data.

• Measurement consistency checks: Delta transformations are monitored over
time, and sudden, unexpected shifts are flagged as outliers if they exceed a
predefined velocity threshold.

By employing these criteria, the system is able to maintain high-quality localization
even in degraded sensor conditions. The fallback graph provides a buffer against sudden
loss of global positioning, using LiDAR and IMU measurements to ensure continuity.
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Recovery from GNSS Loss A major challenge in autonomous operations is ensuring
smooth localization during the transition between sensor loss and recovery. When
GNSS signals are restored after a dropout, there can be significant discrepancies
between the locally estimated pose and the true global pose due to drift. Graph-MSF
handles this through a smooth update mechanism that re-aligns the local odometry
frame with the global world frame upon GNSS recovery.

The transformation from the odometry frame back to the world frame is computed
as:

T W O = T W I · (T OI)−1

Where:

• T W I : The global estimate from the world to the IMU frame.

• T OI : The local odometry estimate from the odometry frame to the IMU frame.

This adjustment ensures that the fallback graph is reset to the state of the main
graph once GNSS becomes reliable again, eliminating potential discontinuities in the
robot’s estimated position.

Consistent Localization during Sensor Dropouts One of the most important benefits
of the Graph-MSF approach is its ability to maintain consistent localization even
during extended periods of sensor dropout. By relying on the fallback graph, which
uses LiDAR as a pseudo-global factor, the system ensures that the robot remains
localized in its environment, avoiding the accumulation of drift often seen in purely
odometry-based methods.

In summary, the Graph-MSF method provides a comprehensive solution for address-
ing sensor degradation and failure through its dual-graph architecture, robust outlier
rejection mechanisms, and smooth transition handling between local and global local-
ization frames. This enables reliable and consistent performance in the unpredictable
and dynamic environments typical of large-scale construction tasks.

5 Summary
In conclusion, this deliverable has presented platform-specific state estimators in the
aspects of multi-modality, sensor degradation/failure detection, and place recognition
and localization. Specifically, aerial robots consist of NTNU RMF, Leica BLK2FLY,
and TUM SRL drone. The state estimator in RMF is based on CompSLAM [17] that
couples LiDAR odometry and VIO in a loosely coupled manner to ensure continuity of
observations. In BLK2FLY and SRL drone, the state estimator is based on OKVIS2 [23]
where the state estimator in BLK2FLY tightly couples multi-modal sensors including
LiDAR, and SRL drone, which is a light-weight platform with only visual-inertial
sensor, tightly fuses visual and inertial observations. For ground robots, the state
estimator in ANYmal is based on VILENS [40] that tightly fuses four different sensor
modalities including IMU, camera, LiDAR, and joint encoders. The state estimator
in SAHA robot is based on Graph-MSF that combines filtering and smoothing in a
graph-based framework with multi-modality including IMU, LiDAR, and a GNSS
receiver. Future work will focus on demonstrating robot autonomy based on the
state estimators where we have shown their robustness and accuracy throughout this
document.
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