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1 Data Format for Shared Maps

1.1 Introduction
The goal of this document is to describe a common data format for sharing and
exchanging maps built by multiple robots. The need for a common data format
arises from the fact that each robot typically runs a customized SLAM (Simultaneous
Localization and Mapping) system tailored for its sensor suite and maintains an internal
map representation. This makes it difficult to exchange and merge mapping data
collected from different platforms. Therefore, a common data format and conventions
need to be established to achieve interoperability.

The common data structure, referred to as the “map payload” or “payload” in the
document, forms the central unit that will be exchanged between robots. This map
payload is expected to be the primary data unit consumed by downstream tasks for
further processing (See Fig. 1).

The map payload defined in this document is designed to be compatible with the
pose-graph map representation described in D3.1. This compatibility ensures that data
collected by different robots and over multiple missions can be merged in a consistent
manner.

The technical details of the map merging procedure will be provided in D3.1 and
D4.2. This will enable a seamless exchange and merging of mapping data collected by
different robots.

In addition to defining the common data format, the document also outlines software
API guidelines for accessing and retrieving the data for downstream processing. These
guidelines will ensure that the map payload is accessed and used in a consistent
manner.

In summary, the document establishes a common data format for sharing and
exchanging maps built by multiple robots. The common data format, referred to as
the map payload, is designed to be compatible with pose-graph map representation,
ensuring that data collected by different robots and over multiple missions can be
merged in a consistent manner. The document also outlines software API guidelines
for accessing and retrieving the data for downstream processing.

1.2 Payload as Common Data Exchange Unit
1.2.1 What is a payload?

The payload is established as the common data exchange unit for sharing data between
multiple robots. A payload is created as an accumulation of sensor data and other
derived metrics in a local area. The data is accumulated or stitched together using
the onboard odometry system on each platform. Once a payload unit is created, it
decouples the downstream tasks from the SLAM/Odometry system used to create
them.

Typically, the odometry system on each platform uses the live sensor data to
estimate the robot’s motion and generate a payload representing the local area around
the robot. Once a payload unit is created, it becomes a standalone data unit that
contains all the necessary information about the local environment that it covers.
This information can include the raw sensor data used to create the payload, locally
accumulated data as well any other relevant derived metrics and other metadata.

For example, a typical payload from a ground robot such as ANYmal would
consist of raw sensor data such as camera images, IMU, GPS measurements as well as
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Figure 1: Each platform/mapping system generates an output using the common
payload format. This enables downstream processes to treat the input data uniformly
decoupling it from the source.

accumulated sensor data such as a local pointcloud map spanning an area around the
robot. In addition, the payload also supports further derived information such as a
terrain map, occupancy information etc. that may be computed online during robot
operation. Essentially, the payloads allow us to group local information efficiently and
decouple the downstream tasks from the SLAM/Odometry system used to create it.

In addition to enabling downstream processing, the use of a common payload
format allows for seamless sharing and merging of mapping data collected by different
robots. By standardizing the payload format, different robots can exchange their
mapping data without needing to understand each other’s unique data structures or
SLAM systems. This helps to reduce the overall complexity of the data exchange
process, allowing for more efficient and effective sharing of mapping data.

1.2.2 What are the payloads designed for?

A payload is designed such that it encapsulates a data unit covering a certain fixed
spatial area. The spatial area covered by an individual payload unit can be set based
on platform specific requirements such as the computational capacity or the size of
the data transfer channel.

As the payload is typically generated at a much lower frequency than the raw
sensor data, it makes the payload data stream amenable to online processing tasks
.This makes it suitable for detailed analysis tasks such as semantic analysis, computing
individual tree properties, or generating area-level statistics.

In addition to online processing, the payload unit can also be used for offline
processing tasks. Since each payload unit contains all the necessary information about
a fixed spatial area, downstream processing can be performed independently of the
source or platform from which the raw data has been captured. This makes it easier
to develop algorithms and applications that are independent of the underlying sensor
suite or SLAM system. The payload unit also enables efficient storage and retrieval of
mapping data, allowing for easier management and sharing of mapping data across
different platforms and systems.

Overall, the use of a payload as the common format for exchanging data provides
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numerous benefits, including standardized data units, flexibility in data management,
and efficient processing and analysis of mapping data. This makes it a valuable tool
for enabling interoperability and collaboration between multiple robots operating in
the same environment.

1.2.3 How is a payload unit created?

The usual operation of creating payload is done onboard the robot or the mapping
device in an online fashion. As an example to understand the payload creation process,
we describe the process for creating a payload unit for a handheld laser scanning
system.

Creating a payload unit for a handheld laser scanning system involves a series of
steps. First, the space to be scanned is divided into smaller areas to create a fixed
spatial coverage for each payload unit. In this case, each payload unit covers an area
of 20mx20m, as shown in Fig. 2, with each payload unit illustrated in a different color.
The payload unit is a dense accumulation of scans that is the locally consistent output
from laser odometry.

To maintain the alignment of the payload data in the overall map, each payload
unit is attached to a unique pose, chosen at the center of the area covered. The pose
attached to the payload data allows it to be re-aligned or adjusted by the map server
using the pose-graph optimization framework described in D4.2. Although the pose
information is typically not directly required by downstream tasks such as extracting
tree semantics or

The payloads can be considered as an atomic unit of a scanning mission. For
instance, 1000m scanned distance can result in 100 payload units. The payload units
can be written to disk and reprocessed by software modules developed by partners.

Furthermore, any processed product can be computed on a payload unit and
can be merged with the original payload unit as an additional layer of information.
For example, additional information could be individual tree instances and other
attributes that have been computed using the payload data. This approach ensures
that the payload data can be reused and repurposed for different downstream tasks.
An example of the downstream task of estimating individual tree instances and the
local terrain information is described in Sec. 1.3.

1.2.4 How is the payload integrated with the pose-graph defined in deliverable
D3.1?

The pose graph-based adjustment and optimization procedure defined in D3.1 allowings
for re-alignment of the pose in case the constraints are updated at a later stage. The
updated constraints can arise from further offline processing resulting in new loop
closures, merging with another overlapping SLAM pose-graph obtained from a different
mission from the same robot, or merging of the pose-graph created by another robot.
In each of these cases, we would be able to re-align the payload data to be consistent
with the new observations/constraints that may be added.

As illustrated in Fig. 3, the payload data is attached directly to a node in the
pose-graph structure. This is ensured by creating the payload data having the pose
node as its reference origin. Typically, the payloads are created at a much lower
frequency or a larger spatial distance in between consecutive payloads, and therefore
only a subset of the pose-graph nodes will have a payload attached to them. Note
that along with the raw sensor data, all the additional information layers attached to
the payload will also be re-aligned and globally consistent.
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Figure 2: Individual payloads visualized in different colors. Note that the payload units
are created using the odometry output as the robot/sensor moves in the surroundings.
As a result, the payloads may be spatially overlapping.computing other attributes
from the payload data, it is important to maintain the spatial information of the
payload unit for accurate mapping.

Figure 3: Payload integration with the pose graph structure defined in D3.1. This
allows the payload data to be deformed/re-aligned along with the node it is attached
to. Each payload unit is associated with a corresponding node in the pose graph at
the time of its creation. The origin of the data in the payload is defined by the pose
of the corresponding node, allowing for a spatial transformation of the data to occur.
This transformation is crucial for ensuring the compatibility of the payload with the
pose-graph optimization framework outlined in D3.1. By associating each payload
unit with a node in the pose graph, it becomes possible to adjust and optimize the
payload data in a consistent manner.
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Figure 4: Input point cloud payload from a handheld mapping pipeline. This payload
is generated online and written to disk for downstream processing.

1.3 Example Application of Payload Processing: Tree Instance Seg-
mentation

In this example application, we create payloads containing aggregated point clouds
onboard the Frontier handheld device. The point clouds from the payloads are then
stored offline after the SLAM mission (as .pcd or similar files) and can be loaded
for downstream tasks, for example semantic analysis or tree instance identification.
Fig. 4 shows an example payload and its use is demonstrated next for an instance
segmentation pipeline. First, in a sequence of preprocessing steps, the ground is
segmented – highlighted in red in Fig. 5 – and subsequently removed. To account for
possible elevation changes, the local ground height information obtained previously is
used and the point cloud is height normalized by bringing all the trees onto a “level”
field. The final result after preprocessing is shown in Fig. 6 . Finally, Fig. 7 then
shows the result of a geometric density based clustering algorithm used to perform
tree instance segmentation. Each identified tree is assigned a unique ID (per patch)
which can be used for further detailed tree-level analysis. This result can then be
stored as an additional layer of information in the payload.

1.4 Map Tessellation
1.4.1 Why do we need map tessellation?

The payloads created during the robot’s movement in the surroundings, as shown in
Fig. 2, may overlap depending on the trajectory. However, in certain offline tasks that
involve analyzing a spatial area in the forest, it is useful to have a unique payload
unit corresponding to the physical space. This is particularly important for temporal
analysis and monitoring of the same area in the forest. By having a unique payload
unit corresponding to a physical space, the analysis can be performed on the same area
over multiple missions without the need for additional alignment or transformation
steps.
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Figure 5: Ground segmentation on the payload. Points in shades of red represent the
ground plane.

Figure 6: Ground removal and height normalization as further pre-processing steps.

Figure 7: Result of Tree Instance Segmentation algorithm on the payload patch. Each
tree instance is represented in a different color.
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Figure 8: Spatially overlapping payloads can be tessellated such that they are non-
overlapping. This may be desired for certain downstream tasks such as area monitoring
or growth analysis.

1.4.2 How can we compute a unique tessellation?

To enable monitoring of spatial areas in the forest, the map data can be partitioned
into non-overlapping partitions, with each partition being associated with a payload
data unit. This partitioning is done as a post-processing step and the original payload
units are still stored in case they are preferred for certain applications. An illustration
of the non-overlapping partitioning scheme is shown in Fig. 8.

There are several schemes for partitioning the map data into non-overlapping
partitions. One approach is to use voronoi segmentation based on the corresponding
payload pose to crop away or merge overlapping points. This method ensures that
each partition contains only the data within the spatial area covered by the payload
unit associated with it. Another approach is to partition the map into a grid structure
of a desired size, resulting in “stands” that are typical in forestry mapping. This
approach provides a simple and standardized way of partitioning the data, with each
partition being a fixed size.

The choice of partitioning scheme depends on the specific requirements of the
application. Voronoi segmentation is suitable when there is a need to create partitions
that follow the contours of the terrain, and when the size and shape of the partitions
can vary. Grid-based partitioning, on the other hand, is suitable when a fixed and
standardized size of partitions is desired. Both methods provide a way to create
non-overlapping partitions of the map data, which are associated with payload data
units for efficient offline analysis and monitoring of spatial areas in the forest.

1.5 Full Data Pipeline for Forest Operations
1. Robot Operation: Robots move through a forest. Each robot typically runs

their own odometry/SLAM systems and builds up maps. The maps are stored
in a pose graph representation. This allows us to support robots without GNSS
and with poor GNSS reception within the forest. In that situation, maps would
be limited to a local coordinate/map frame. Robots can and will use data from
prior operations to do pre-planning.

2. Raw payload: The data output by the robots is in a general pose graph
format and payload data that includes raw sensor measurements and any other
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Figure 9: Complete Data Pipeline. Boxes correspond to algorithms or applications.
Arrows correspond to data. Here, we describe a complete operation scenario of forest
mapping with multiple robots and emphasize the role played by payloads in the full
data pipeline.

information estimated onboard. These payload blocks would be created after
traveling a certain distance, eg. 20m of travel as shown Fig. 2.

3. Multi-mission SLAM: If there are multiple missions which physically overlap
and/or if GNSS/RTK is only available in post-processing, missions from different
times or robots can be merged together to progressively map several hectares.

4. Offline data processing: This involves all data processing pipelines which
extract relevant data from the raw sensor data, primarily the point clouds and
camera images. The tasks include individual tree segmentation and parameter
extraction, terrain mapping, species classification, trunk quality assessment,
understory growth estimation, semantic segmentation, traversability maps for
robot navigation etc (WP4). Note that certain types of algorithms could be
run online as the payloads would be produced at a lower rate, for example one
payload every 20m traveled.

5. Enriched payloads: The payload data at this point now contains per-tree
attributes and the types of labeling which would be output by the above data
processing. Conversion to regularly sized grids and GNSS aligned data may be
performed at this stage (WP4).

6. Presentation to Foresters: At this point the data would be well organized
and higher level attributes could be presented to foresters or provide inputs to
DSS such as growth modeling (WP6)

1.6 Payload Data Organization for Offline Storage
1.6.1 What data formats will be supported for different sensors?

As a minimum set, we aim to support the following file formats for offline storage
of raw sensor data. In addition to the raw sensor data, additional derived metrics
computed online can be stored as well. The file formats for the derived metrics will
vary and file access methods for this data will be provided by the partner generating
the data.
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Figure 10: Example of a volumetric map generated with the Supereight2 library, a
framework created by the Smart Robotics Lab from TUM.

Sensor Supported File Formats Attributes
Laser Scanner .pcd, .ply, .las Point positions, normals
RGB Camera .png RGB images
Depth Camera .png, .pcd, .ply Depth images/pointclouds
GNSS Receiver .txt latitude, longitude, altitude,

Signal quality metrics
IMU .txt Acceleration, biases

1.6.2 What type of map formats will be supported?

In addition to the raw sensor data, a payload unit can also support maps that may be
created either online or offline. The simplest representation is a pointcloud map of
the local area defined with its origin coincident with a node in the pose-graph map.
Examples of such pointcloud maps are illustrated in Fig. 2. The payload also supports
elevation maps and volumetric map representations that are typically computed
onboard the robot platforms for navigation and path-planning. These volumetric
map representations may encode occupancy information, surface information using
Truncated Signed Distance Functions (TSDF) etc. An example of a volumetric map is
shown in Fig. 10.

1.6.3 How is the payload data organized on disk?

The payload data for the mapping mission is stored on the disk in a hierarchical
manner. The data is organized based on the sensor data type and associated with
the corresponding node in the pose graph with the timestamp as the identifier. An
example of how the payload data is organized is illustrated in Fig. 11.

2 Software API for multi-robot map sharing
This section describes software API guidelines for accessing payload data in both
online and offline mode.
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Figure 11: Folder structure showing the payload data organization for offline storage.
12
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2.1 Payload access for online processing
During online operation, we leverage the ROS infrastructure for data transfer and
communication between different programs, also referred to as nodes, running on the
robot. For low data rate applications, ROS based communication via WiFi can be
used in-between multiple robots or between a robot and an operator computer.

We use standard ROS messages to publish sensor data. This data is broadcasted
over the ROS network and is available to all programs that subscribe to this data.
Some of the commonly used sensor data types across the robot platforms are:

• sensor_msgs/Pointcloud2 : Supports point cloud data generated by LiDARs
and Depth cameras

• sensor_msgs/Image: Supports multiple image types including onboard compres-
sion for efficient data transfer

• sensor_msgs/Imu: Supports high frequency IMU measurements

• sensor_msgs/NavSatFix: Supports GNNS position and additional metadata.

• nav_msgs/Odometry: For robot pose information

In addition to raw sensor data, the payload units may also include derived infor-
mation computed online such as local elevation maps etc. For exchanging such data,
custom data types will be defined using ROS custom message system. These message
definitions will be shared between all project partners.

2.2 Payload retrieval for post-processing
After a SLAM mission, the payload data is stored to the disk according to the
hierarchical organization described in Sec. 1.6.3. For processing the payload data
offline, we provide some guidelines for the software API.

• Retrieve payload data by type

retrieve_payload_by_type(mission_folder_path, data_type) -> payload data
Input: path to mission folder on the disk, data type to retrieve, eg. pointcloud
Output: payload data as relevant data structure
Requires: SLAM pose-graph for the mission as described in deliverable D3.1

• Retrieve payload data by SLAM pose

retrieve_payload_by_pose(mission_folder_path, slam_pose) -> payload data
Input: path to mission folder on the disk, SLAM pose for which data is requested
Output: payload data as relevant data structure
Requires: SLAM pose-graph for the mission as described in deliverable D3.1

• Retrieve payload data by GNSS position

retrieve_payload_by_gnss(mission_folder_path, slam_pose) -> payload data
Input: path to mission folder on the disk, GNSS coordinates for which data is

requested
Output: payload data as relevant data structure

13
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Figure 12: Visualization of Payload data of ROS supported formats with RVIZ
GUI. We provide RVIZ based tool (Fig. 12) and configuration files to visualize basic
payload data such as point clouds, images, robot trajectories etc. The RVIZ visualizer
subscribes to the sensor data topics and visualizes the stream of data. The visualizer
relies on the sensor data to be ROS compatible. This tool may be used both for
visualizing data online or in a playback fashion. In the future, the visualization tool
will be extended to multiple missions. If geo-referenced payload data is available, then
it can be visualized as on overlay on satellite imagery.

Requires: SLAM pose-graph with GNSS reference for the mission as described in
deliverable D3.1.

Note that in this section, we only provide guidelines for the API. The concrete
implementation of the API will be done in C++ and Python over the course of the
project.

2.3 Tools for Payload Visualization
2.3.1 RVIZ based Visualization for ROS supported types

2.3.2 Director GUI for Offline Payload Visualization

Complementary to the RVIZ visualizer, we provide a visualization tool for offline
payload data based on Director. The visualizer loads offline payload data from the
folder structure described in Sec. 1.6.3. The user can interact with individual payload
units and inspect various attributes of the payload such as tree instances, terrain map
etc. We will expand the functionality of the visualizer over the project period as new
attribute layers will be developed.

2.4 Conventions and Protocols
2.4.1 Naming of Dataset

The dataset name should contain the date of the recording, place indicator, and the
robot name/id. Some examples of good naming practice are:

• 2023-01-13-wytham-anymal-coyote

• 2023-04-21-stein-am-rhein-frontier-v15
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Figure 13: Offline payload visualization tool based on Director.

While saving the sensor data as rosbags, date and time for each rosbag should be
retained. The recommended format is: RobotID-Date-Time-AdditionalTag.bag

2.4.2 Dataset Metadata

In addition to retrieval methods for individual missions described in Sec 2.2, we would
like to efficiently retrieve relevant missions and payload data from the common dataset
collection. As multiple datasets would be collected from various robot platforms over
the course of the project, we propose to attach a metadata file to each dataset. This
metadata information would be useful for retrieving relevant data from a particular test
site, time frame when data was acquired, or a particular robot platform. An example
metadata file is described below. Note that the metadata file may be automatically
generated if the naming conventions described in Sec. 2.4.1 are followed.

metadata.yaml
• Date and time of dateset recording

• Robot ID

• GNSS coordinate (if available)

• List of sensors

• Custom tags/Additional notes from user
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