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1 Introduction
Deliverable D5.1 is a report about forest inventory accuracy using individual tree
detection with high density UAV-LiDAR as a data source. Reported accuracies are
based on field trials in March 2023 (M6) and July 2024 (M22) in Switzerland and in
May 2023 (M8) in Finland. The collection of field reference data for this deliverable
was done under task T.6.2 specifically T.6.2.1.

2 Materials and Methods

2.1 Study Areas
2.1.1 Switzerland

The test area for trials is located in Stein am Rhein, northern Switzerland (Fig 1),
near the border of Germany and Switzerland. Altitude of the study site from sea level
is 600 - 700 m and is commercially managed by the forester from Forstbetrieb Stein
am Rhein. The ares’s topography is varying from larger flat areas to areas unreachable
by larger forestry machines and harvesters. Species composition in the area consists
mostly of Beech (Fagus L.), Spruce (Picea L.) and Douglas Fir (Pseudotsuga L.).

The area selected for the mapping with aerial data was in total 80 hectares in size.

2.1.2 Finland

Test area for trials is located in Evo, southern Finland (Fig 2) and is used widely for
remote sensing based forestry research by University of Helsinki, University of Eastern
Finland and Finnish Geospatial Institute (Hakula et al. [2], Muhojoki et al. [5]). The
forests are a mix of natural and commercially managed forests and the age structure
combines young sapling stands and old growth forests. Species composition consists of
Scots pine (Pinus L.), Norwegian spruce (Picea L.), Birch (Betula L.).

The area selected for scanning was 119 hectares in total covering all species and
development stages of boreal forest that are used for commercial operations.

Figure 1: Test area coverage in Stein am Rhein, Switzerland.

2.2 Point Cloud Data
Aerial data was collected with PreFor’s in-house developed UAV-LiDAR payload
and the LiDAR measurement device used was a Velodyne HDL-32e. Collected data
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Figure 2: Test area coverage in Stein am Evo, Finland.

was post processed using PreFor’s proprietary cloud based software for point cloud
processing. Data collection was done in March 2023 in Switzerland, May 2023 in
Finland and July 2024 in Switzerland.

Mobile laser scanning data was collected by the University of Oxford using a
Frontier mobile mapping device. Data was collected during all of the field campaigns,
but not utilised for the purpose of this deliverable.

Terrestrial laser scanning data was collected in Switzerland by PreFor during March
2023. For data collection a Riegl VZ-400i was used, which was obtained from WSL.
This terrestrial data was used as quality reference for the mobile and aerial mapping
units data.

2.3 Reference Data
2.3.1 Switzerland

Reference data from Switzerland was collected in March 2023 by a) manually collecting
tree information by WSL, and b) stamping AprilTags to the trees to be measured, for
identification of individual trees from the collected terrestrial point cloud (University
of Oxford) in a total of 11 different plots. Reference plots consisted of different species
compositions and tree densities. Main purpose of this field reference data was to act
as the basis for developing algorithms and models. Since the amount of data was
comparably small, there was not any division to training and testing datasets.

Merging of the reference data to georeferenced aerial point cloud data was done using
least squares optimization of xy-translations. Individual tree reference measurements
consisted of the following attributes: diameter at breast height, species, lowest branch
height. A summary table from reference measured trees is presented in table 1.

Using terrestrial laser scanning data, each individual reference-measured trees was
extracted and quantitative structure models were used to estimate different tree crown
and volumetric attributes together with diameter and height of the tree (Fig. 3).
Results generated using quantitative structure models can be considered as reference
for the predicted metrics for individual trees that are obtained using only aerial data.
Reference created from terrestrial laser scanning data using quantitative structure
models was used for evaluation of diameter estimation algorithms by University of
Oxford , but not in this deliverable.
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Species count dbh
mean std min max

Abies alba 8 69.3 15.7 47.5 89.2
Acer platanoides 2 15.1 5.6 11.1 19.0
Acer pseudoplatanus 33 17.9 10.7 7.7 54.7
Alnus glutinosa 1 26.6 26.6 26.6
Betula pendula 5 12.7 7.9 7.4 26.6
Fagus sylvatica 58 42.9 17.2 9.1 84.4
Fraxinus excelsior 3 25.0 14.9 8.2 36.6
Larix decidua 12 37.9 14.9 24.0 68.5
Picea abies 58 36.1 12.5 13.2 67.7
Pinus sylvestris 9 35.0 17.9 12.5 67.2
Pseudotsuga menziesii 15 51.3 12.5 38.7 92.0
Quercus robur 11 11.8 2.3 7.9 15.5
Tilia cordata 11 21.5 7.5 9.4 31.9

Table 1: Summary of the species count and metrics for the diameter of the trees in
centimetres.

(a) Tree point cloud of a
Fraxinus Excelsior

(b) Cylinder model of a
Fraxinus Excelsior

Figure 3: Different colours represent different branching orders
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During the field trials in July 2024 in Switzerland, another separate reference
dataset was collected to be used for evaluation, which is visualised in Fig. 4. The
dataset was collected by WSL, and tree measurements are covered only for part of
the trees. In order to evaluate accuracy of forest inventory based on aerial data,
four artificial plots were set up inside the larger plot, which contain measurements
for all the trees. The dataset contains only tree species and diameter, so calculated
accuracy metrics from this data are for tree density, diameter, basal area and species
classification.

Figure 4: Treemap from intersection plot in Stein am Rhein

2.3.2 Finland

Reference data from Finland trials was collected from 12 sample plots that had been
established in 2014 by the Centre of Excellence in Laser Scanning Research - network.
Plots were measured with terrestrial laser scanning devices again during 2019, 2021 and
during spring of 2023 there was a fourth campaign to produce a longitudinal dataset
for the area for research purposes. Sample plots had also field reference measurements
done during years 2014, 2019 and 2021, some of the plots have been thinned between
the years. Data collected from the area is openly available through SCAN FOREST
research infrastructure (scanforest.fi).

Reference measurements for individual trees were done using an a priori treemap
generated from tree-level forest inventory created using aerial laser scanning data and
PreFor’s proprietary software. Treemaps were corrected for omission and commission
trees during the field measurements, where next attributes were collected: species,
diameter at breast height. Height was not measured for reference, since it is more
accurate to calculate tree height from a point cloud instead using an angular measure-
ment device (hypsometer etc.) in the field. A summary table from reference measured
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trees is presented in table 2.

Species count dbh
mean std min max

Pinus sylvestris 820 24.6 6.4 2 43.3
Picea abies 1214 11.1 7.4 1.3 41
Betula pendula 484 17.3 9.6 1.7 60

Table 2: Summary of the species count and metrics for the diameter of the trees in
centimetres.

2.4 Methods
Individual tree-level inventory was done using PreFor’s proprietary cloud based point
cloud processing software. The software processes input point cloud data, and detects
individual tree locations while simultaneously calculating other relevant parameters
such as: height, crown width, species and height of the living canopy. After the
extraction of the basic parameters for individual trees, data is enriched using machine
learning and statistical models in order to calculate indirectly the following parameters:
diameter, volume, biomass, carbon and expected growth.

The accuracy of the forest inventory was calculated using plots as the unit of
measurements. Metrics describing the accuracy were: basal area weighted mean
diameter, basal area, dominant height, mean height, tree density and volume. For the
evaluation of individual tree-level accuracy tree detection rate and species classification
accuracy were calculated and reported. Metrics used for calculating accuracy were
bias, relative bias, root mean square error and relative root mean square error.

The species label was divided to include only genus such as Acer spp. due to the
limited amount of instances in reference data from Switzerland. In Finnish data, three
main species were used (pine, spruce, birch).

To measure the accuracy of forest inventories constructed using Oxford’s MLS
system, the online tree reconstruction pipeline presented in Freißmuth et al. [1] was
used. The publication sumarizing this work is attached to this deliverable for further
reference.

3 Results

3.1 Switzerland
Validation data from the test area in Switzerland contained only information for
location, tree species and diameter. Based on this reference, tree density, basal area,
diameter and species classification accuracy are reported. In total there were four
subplots from the reference area that contained all the trees that could be used for
evaluation plot-level accuracy in the external validation dataset. Accuracy of the
diameter and basal area and tree density are reported in Fig. 5. During the field trials
in July 2024 there was also evaluation of diameter accuracy at tree-level, where bias
was + 8 % and RMSE 25 %, when using data collected during the field campaign in
March 2023.

Species classification was developed using terrestrial laser scanning data and field
reference measurements from March 2023. During the initial tests in the training
dataset 85 % overall classification accuracy was achieved, with 9 tree species in total.
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Figure 5: Error distribution of basal area weighted mean diameter (cm) and basal
area (m2/ha) and tree density (trunk count, s/ha) in plot-level.
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During the field campaign in July 2024, a dataset of 200 trees (112 coniferous, 88
deciduous) was collected in order to evaluate species classification accuracy. Evaluation
revealed that the model was capable of differentiating between coniferous and deciduous
trees, but within deciduous trees there are lots of difficulties and species classification
accuracy was overall 14 %. When calculating classification accuracy only between
deciduous and coniferous trees, overall accuracy was 58 %. Results from classification
of deciduous and coniferous trees are presented in Fig 6.

Figure 6: Classification accuracy between deciduous and coniferous species.

Using the online pipeline for creating forest inventories from MLS point clouds [1],
diameter estimates have been generated and matched against the foresters’ manual
measurements using April Tags. Across all species, this resulted in a root mean
squared error of 1.93 centimeters, which is competitive to the state of the art. All
measurements have been acquired in real time while the data collection was running
making post-processing unneccessary.

3.2 Finland
The accuracy of the inventory metrics were calculated for plot-level, where accuracy
of the trunk density was reported according to Fig. 7. Tree detection rate was 95.5 %
of the amount of trees that were measured in the forest. Diameter limit for the trees
in reference was 5 centimetres.

One of the most important metrics for the inventory is tree diameter, which
attributes also to the accuracy of basal area, volume, weighted mean diameter, weighted
mean height and dominant height. When using only aerial data, regional allometric
models from Kalliovirta et al [3] are being used that utilise species, crown width and
height to predict diameter. This chain of models was able to give accuracies reported
in the Fig 8 in plot-level.

Accuracy of basal area and volume are presented in Fig. 9. The volume was
calculated using taper curve models by Laasasenaho [4], which utilises species, height
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Figure 7: Error distribution of tree density (trunk count, s/ha) in plot-level.

Figure 8: Error distribution of basal area weighted mean diameter in plot-level.
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and diameter information. Reference is calculated by changing species to observed
species and measured diameter from the field measurements.

Figure 9: Error distribution of volume and basal area in plot-level.

Dominant height accuracy is one of the most accurate metrics that is possible to
retrieve from UAV-LiDAR data. Error in this case is calculated keeping the height as
the same value in inventory and reference, but the varying factor is order of the largest
trees by diameter. When expecting the highest trees to have the highest diameter
and height accuracy is near zero, then there is only small variations in the dominant
height compared to reference. Accuracy of the basal area weighted mean height is
expectedly close to the accuracy of dominant height. Error distributions of dominant
height and mean height are visualised in Fig. 10.

Figure 10: Error distribution of mean height and dominant height in plot-level.

The species classification accuracy is presented in Fig. 11. Classification of pine
and spruce were most accurate, but classifying birches had some problems. The reason
for this mainly comes from the fact that the data was collected during leaf-off season.
Inventory is intended to be mainly conducted during leaf-on season, so there is bias in
the training data used for species classification towards that scenario. Pine and spruce
have some similarities in geometrical structure, which makes confusion between these
instances more common than with spruce - birch pair.
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Figure 11: Species classification confusion matrix with Finnish UAV-data.

4 Discussion

4.1 Switzerland
Forest inventory that has been conducted using UAV-LiDAR data at the test site in
Switzerland is one of the first steps in the creation of a similar inventory product and
system for the Central-European market as in Finland. One of the main challenges when
changing location from Finnish commercially managed forests to Central-European
forest with less silvicultural activities are more diverse structure of forest’s that creates
challenges for tree detection and larger diversity in tree species. The larger proportion
of broad-leaved forests also creates challenges in tree-level modelling, when there is
not as strong allometric relationship as there is with coniferous trees.

The missions performed with the MLS acquisition and online reconstruction pipeline
have demonstrated state of the art estimates of the DBH being feasible on mobile
system, which can be deployed on backpacks or alternatively on autonomous mobile
platforms such as quadruped robots. The real time nature in particular makes the
system highly deployable and easy to use as no time-consuming data management and
post-processing is necessary.

4.2 Finland
PreFor’s product, that is used for creating automatic forest inventory in Finland, has
been extensively tested in different kinds of forest structures. During this project,
the accuracy of the inventory was evaluated in commercially managed forests, in an
area which has been widely used for research purposes utilizing datasets from different
sources (aerial, mobile, terrestrial). Evaluation of the accuracy revealed that either
using only aerial laser scanning data collected by drone or mobile laser scanning data
from a handheld device, can produce accuracies competing with the state of the art.
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When doing forest planning on a larger scale using individual tree-level information
to extract compartment metrics and proposed action recommendations, there is a need
for unbiased data. Random errors in individual trees are aggregated and statistically
the mean error for compartment level is close to zero with unbiased predictions. While
reaching this level of detection accuracy for larger and more diverse and complex areas,
there remains sources of error that are difficult to take into account. Local differences
in tree allometry regarding tree height and form of the taper curve form is becoming
the dominating source of error with using only aerial data. In the future, this can be
avoided by being able to directly measure the trees from the air with LiDAR. This will
require that the accuracy of the sensors and algorithms keep evolving. An additional
way to tackle these challenges is to include mobile laser scanning in the measurement
pipeline to increase the density of accurate measurements along the height of the tree.
This allows to perform automatic plot measurement, and calibration of the individual
level tree-level models in the changing environment and climate.
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Online Tree Reconstruction and Forest Inventory
on a Mobile Robotic System
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Fig. 1: The online pipeline for real-time reconstruction of trees running on a mobile robot walking through a forest (a). While acquiring
data, a forester can evaluate the mapping process in real-time to evaluate coverage and reconstruction quality. The pipeline is able to
reconstruct important tree traits online (b) and has been tested on plots as large as 0.7 ha (c), which we visualize in our video attachment3.

Abstract— Terrestrial laser scanning (TLS) is the standard
technique used to create accurate point clouds for digital
forest inventories. However, the measurement process is de-
manding, requiring up to two days per hectare for data
collection, significant data storage, as well as resource-heavy
post-processing of 3D data. In this work, we present a real-time
mapping and analysis system that enables online generation
of forest inventories using mobile laser scanners that can be
mounted e.g. on mobile robots. Given incrementally created
and locally accurate submaps—data payloads—our approach
extracts tree candidates using a custom, Voronoi-inspired clus-
tering algorithm. Tree candidates are reconstructed using an
algorithm based on the Hough transform, which enables robust
modeling of the tree stem. Further, we explicitly incorporate
the incremental nature of the data collection by consistently
updating the database using a pose graph LiDAR SLAM
system. This enables us to refine our estimates of the tree traits
if an area is revisited later during a mission. We demonstrate
competitive accuracy to TLS or manual measurements using
laser scanners that we mounted on backpacks or mobile robots
operating in conifer, broad-leaf and mixed forests. Our results
achieve RMSE of 1.93 cm, a bias of 0.65 cm and a standard
deviation of 1.81 cm (averaged across these sequences)—with
no post-processing required after the mission is complete.

I. INTRODUCTION

In traditional clear-cut forestry, plots of several hectares
are felled at once when deemed ready for harvesting or
thinning [21]. Modern forestry methods aim to minimize the

1 The authors are with the University of Oxford, UK. {matias,
nived, mfallon}@robots.ox.ac.uk .

2 The authors are with the Technical University of Munich,
Germany. {stefan.leutenegger, simon.k.schaefer,
l.freissmuth}@tum.de

3 Our video attachment can be found at https://youtu.be/
5AJwPEV1ZMU.

impact on the forest ecosystem by carefully selecting which
trees to cut—usually those fully grown or inhibiting the
growth of other trees—which is called continous coverage
forestry [20]. To support this approach and to assess its im-
pact on the ecosystem requires the systematic data collection
of tree locations and relevant tree traits, forest inventories,
which enable the construction of high-fidelity digital twins
of the forest, known as marteloscopes. For producing these
marteloscopes, foresters and ecologists traditionally measure
the tree traits manually, which is time-consuming and limits
the set of tree traits that can be measured.

In order to address these challenges, methods based on
terrestrial laser scanning (TLS) enabled a systematic and
accurate acquisition of forestry data. However, they need
periodic repositioning of the laser device through the forest,
which increases data acquisition time and requires resource-
heavy post-processing to determine the forest traits. In addi-
tion, vast amounts of raw data are generated, which reach up
to 20 GB/ha. Alternatively, mobile laser scanners (MLS) have
a much lower acquisition time as the sensor continuously
moves, e.g. on a mobile robot. MLS methods, however, incur
a compromise in sensor accuracy—a TLS sensor achieves
millimeter measurement accuracy while MLS scanners are
in the centimeter range. As a result, MLS mapping systems
suffer from drift in pose estimation.

To address the issues of file size and post-processing
time, we propose to amortize the post-processing time by
performing the reconstruction online, during data acquisition.
This approach provides immediate feedback on the scanning
quality and coverage, and produces a marteloscope immedi-
ately after the session ends. In our initial approach, Proudman



et al. [25] attempted to achieve this by detecting trees at
the sensor rate of the LiDAR and then fusing and correct-
ing the estimates upon loop closure. This required several
simplifications in the tree detection and modeling to cope
with the sensor frequency, consequently producing inferior
reconstructions. This—in combination with the sparsity of
single scans—did not allow for faithful estimation of tree
parameters.

In this work, we address these limitations and introduce
a real-time system to create online forest marteloscopes on
mobile robotic platforms. We use a combination of a pose
graph SLAM system and a custom Tree Manager module to
segment trees, associate measurements over time, and main-
tain global consistency. Once there are enough measurements
available for a tree, it is reconstructed employing a filtering
procedure based on the Hough Transform and a model-
averaging reconstruction algorithm. Although running with
limited compute resources, our pipeline produces faithful
estimates of important tree traits faster than point clouds
are acquired. Thus, our approach can be considered the
first algorithm that enables real-time forest inventory with
reconstructions available as soon as the measurement session
has ended.

In summary, we present four contributions in our work:
Our approach is able to (i) extract relevant tree traits online
with accuracy competitive to state-of-the-art post-processing
approaches, (ii) produce a globally consistent tree map of
the forest which is built incrementally and updated in real-
time, (iii) robustly detect and fit stacks of oblique cone
frustums in the presence of heavy noise, which has been
tested on datasets of different tree compositions, (iv) run on
a mobile system - either a quadruped robot or a human-
carried backpack. We have extensively tested our approach
using forest data from the UK, Switzerland, and Finland.

II. RELATED WORK

1) Terrestrial Laser Scanning: The ecology and forestry
community has developed a mature body of literature de-
scribing tools for building forest inventories using TLS [15],
[16]. Methods building high-fidelity models usually employ
highly engineered pipelines based on cover sets, clustering,
sorting, and cylinder fitting algorithms to reconstruct the tree
components [14], [27]. While these methods aim to extract
maximum information from point clouds, they often incur
substantial computational costs, with processing times up to
half an hour per tree [27].

Other methods focus on building a lower fidelity model
of the tree that only considers the stem. These approaches
typically begin with Voronoi clustering of the trees [23], fol-
lowed by individual stem reconstruction [5], [23]. Methods
employing clustering of cover sets can reconstruct multiple
trees from the point cloud directly [22].

Stem models usually consist of stacked oblique cone
frustums [5], [17], [23] or a cubic spline [22] that interpolates
the diameters, enabling the tree diameter to be interpolated
and extrapolated along its height. These methods involve a
reconstruction of a stack of circles. An effective approach

has been to filter outliers that are not in keeping with three
lower circles [17], [22]. When coupled with terrain detection,
these methods offer an automated procedure to estimate the
diameter at breast height (DBH) and other tree traits, such as
the total merchantable volume [22], [23] and stem curvature
[24]. They achieve a Root Mean Square Error (RMSE) for
the DBH estimate as low as 7.3 mm [22].

While these approaches offer high-fidelity representations
and accurate reconstructions, their computational cost makes
them unsuitable for online processing. So instead, in this
paper, our emphasis lies on Mobile Laser Scanning, enabling
convenient data generation and evaluation by moving the
sensor through the plot—in a fraction of the time.

2) Mobile Laser Scanning: Other researchers also focus
on improving MLS systems, deploying them on backpacks
[12], [25] or drones [11]. A notable advantage of MLS
systems is that they achieve better coverage of the trees
by continuously scanning from multiple perspectives [3].
The primary challenge facing MLS pipelines, however, is
the complex alignment procedure of point clouds. While
short-term missions may suffice with simple integration of
odometry for alignment [26], longer missions need a SLAM
system to correct sensor drift in the odometry [3], [11],
[12]. As we design our pipeline to work with long-duration
scans, we also employ a SLAM system to ensure global
consistency. Once a globally consistent map is obtained,
MLS pipelines employ various methods to generate a digital
terrain model (DTM) to standardize the clouds by height.
This is followed by clustering using learned approaches [26],
the Watershed Algorithm [11], the QuickShift++ Algorithm
[19], or euclidean clustering [25].

For modeling a tree, MLS methods usually represent the
stem as a single cylinder [25], a stack of oblique cone
frustums [3], [11], [18], or polynomial curves [11], [12] fitted
to a stack of circles. The most promising results are achieved
by curve models with RMSE for the DBH of 0.6 cm. Non-
curve-based methods achieve an RMSE for the DBH as low
as 1.14 cm [23]. All these methods process point clouds
in post-processing after acquiring all data and leaving the
forest. To support foresters in gathering high-quality data
and reduce reconstruction time, our focus is on an online
approach that provides a real-time visualization as the map
and reconstructions are being generated.

It is hard to compare the algorithms of related work to our
datasets as the complex pipelines and datasets are usually not
accessible or applicable to our data. Instead, we compiled the
reconstruction results of state-of-the-art approaches in Tab. I
to assess the performance of our pipeline. As can be seen,
our approach achieves competitive results while at the same
time being able to run online, which is novel to the field.

III. METHOD

The pipeline we propose, as shown in (Fig. 2), builds on
top of our pose graph SLAM system, which is fed by a
LiDAR inertial odometry (LIO) module [29]. The local map-
ping module integrates point clouds to local submaps—data
payloads—to increase density. A constant stream of payloads



RMSE
DBH ↓

Plot
Types

online
capability

Meher et al. [19] 11.8 cm C 7
Bienert et al. [3] 3.8 cm M, D 7
Liu et al. [18] 2.0 cm M 7
Bauwens et al. [2] 1.1 cm C, M, D 7
Hyppä et al. [11] 0.6 cm C 7
Ours 1.9 cm C, M, D 3

TABLE I: Comparison of state-of-the-art approaches for building
forest inventories from MLS point clouds. The RMSE for the DBH
is given for each approach. The plot types are C: Coniferous,
M: Mixed, D: Deciduous.
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LiDAR
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Immediate
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#  x   y  dbh
0  21.2 30.1 0.21
1  25.4 32.3 0.13
2  19.3 36.6 0.18
3  23.8 27.2 0.20
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Fig. 2: Overview of our proposed online tree reconstruction
pipeline. The central Tree Manager is fed with payload clouds from
the local mapping module as well as the pose graph from the LiDAR
SLAM system. It generates a real-time visualization and constructs
a marteloscope.
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Fig. 3: Overview of the Tree Manager module. Terrain models
are produced by a cloth simulation filter (CSF) and clusters are
computed by a Voronoi-inspired algorithm. We aggregate them over
time in a globally consistent manner using the SLAM pose graph.
After reconstruction of the trees, we can extract important tree traits.

is the input to our Tree Manager (Fig. 3). The Tree Manager
builds a Local Terrain Model and segments the trees. It uses
the SLAM pose graph to aggregate measurements for tree
instances in a spatio-temporal manner. With enough data,
the tree is reconstructed and tree traits are extracted. The
result of the pipeline is an online visualization of the map
and a marteloscope immediately after data acquisition.

In our work, we use two coordinate frames: The map
frame M for final reconstruction and the moving sensor frame
St at timestamp t, for representing raw measurements.

A. Local Mapping

Using the poses provided by the odometry and by inte-
grating loop closures, VILENS builds a globally consistent
and time-varying pose graph. This graph comprises stamped

transformations MTSt from sensor frame to map frame.
The LIO system outputs a point cloud at a rate of 10 Hz.

Although the density of an individual scan is sufficient for
odometry, it is not dense enough for faithful tree reconstruc-
tion. This is why we integrate individual measurements along
a trajectory of 20 m using the poses provided by the LIO,
which we call a payload (abbreviated pl). We represent the
payload in St with t referring to the center timestamp of
the 20 m long trajectory. Using t as a unique identifier, the
payload cloud is attached to the SLAM pose graph. To reduce
computational load, we first downsample the cloud using a
voxel filter with a resolution of 1 cm. Secondly, we remove
points further away than rpl = 20m as they are noisier than
short-range points. After reducing the point count, we call
the stamped payload cloud StPpl.

B. Terrain Model based on Cloth Simulation Filtering

For modeling sloping forest terrain, we generate a local
DTM StMlocal

DTM for StPpl using the cloth simulation filter
proposed by Zhang et al. [31]. We associate it with the
SLAM pose graph so that we can combine the set of StMlocal

DTM
into a global DTM MMglobal

DTM to extract tree traits (Sec. III-D).

C. Voronoi-Inspired Tree Segmentation

To cluster the trees, we propose an adaptation to the
algorithm introduced by Cabo et al. [5], where the authors
clustered TLS point clouds. Cabo et al. normalized the floor
height of the point cloud and cropped it between heights
where they expected no foliage. After clustering the cropped
sections, they fit tree axes to the clusters using principal
component analysis, and ultimately assigned points to tree
instances by distance to the closest tree axis following the
Voronoi paradigm.

We extend their approach by introducing non-maximum
suppression (NMS), where we fit tree axes to three cropped
sections—instead of one—and choose the best fit using
a fitness function. After normalizing the floor height of
StPpl using StMlocal

DTM, we align the cloud with gravity by
transforming it into the map frame M. Now, we crop the
cloud at three height intervals and cluster the crops using
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [8] resulting in cluster point clouds {Pktcluster}kt .
We fit a cylinder to each cluster by estimating two circles
(Sec. III-E) fitted to slices on the top and bottom of the
cluster. After this, we use the fitness function φkt described
in Eq. (1), employing the distance d(pi, akt) from point
pi ∈ Pk

t

cluster to axis akt , the cylinder’s radius rkt , and
the Heaviside function H(x). This function penalizes points
inside the cylinder and prefers points close to its surface.

Using φkt , we apply NMS to select the best cylinders,
whose main axes build the final set of axes {alNMS}l.

φkt =
N1.2∗rkt

N0.5∗rkt

Nθ =
∑

i

H(d(pi, akt)− θ) (1)

Finally, we compute distances from every point in the
height-normalized point cloud to all alNMS. After undoing



the height-normalization and transforming the point clouds
back into St, we arrive at cluster point clouds StPcluster,l.

D. Spatio-Temporal Aggregation

In order to keep the map globally consistent over time,
the tree manager uses MTSt from the SLAM pose graph to
transform raw measurements, which are stored in the sensor
frame St, into map frame M. Whenever loop closures occur,
the SLAM system updates MTSt , which keeps the pose graph
and thereby our reconstructions globally consistent.

To build MMglobal
DTM , which is used to locate the measurement

height for the DBH, all local DTMs are converted into
map frame M. For smooth blending of the local models, we
generate weights for every vertex of the DTMs using the
function described in Eq. (2). It enables a C0-continuous
transition between local DTMs using their width wDTM and
length lDTM as well as the sensor position xsensor. Using
rays sampled on a regular grid and an efficient ray-to-mesh
intersection algorithm by Wald et al. [28], we build MMglobal

DTM
by computing the weighted average of the local DTM heights
for every ray.

w(x) = 1− ||x− xsensor||2
min(lDTM, wDTM)/2

(2)

In addition to MMglobal
DTM , the Tree Manager also maintains

a database of tree instances. Whenever a clustering result
becomes available, every cluster StPcluster,l is compared to
the current database of trees. StPcluster,l is either added to
an existing tree instance if it is close, or a new instance is
created. Using the timestamps of the clusters for association,
the Tree Manager regularly realigns all clusters in all trees
using the most recent MTSt from the SLAM pose graph.

To make the best use of the available compute resources,
we require certain coverage conditions on every tree before
it is reconstructed. The first condition is a maximum distance
of the sensor from the tree of at least dreco

min , which ensures
that the LiDAR with its limited field of view has scanned
points sufficiently high up the tree. The second condition is
the coverage angle αreco

min making sure that there are sufficient
measurements from around the tree. In our experiments
values of dreco

min = 10m and αreco
min = π gave reasonable results.

E. Tree Reconstruction and Tree Trait Extraction

Once the reconstruction criteria of the Tree Manager are
fulfilled, we reconstruct the tree as a stack of oblique cone
frustums between circles at regular heights (Fig. 5). To
generate a circle modeling the tree’s crosssection at a certain
height, we slice each cluster in a tree instance resulting in
2D point clouds. The biggest challenges here are to reject
outliers originating from twigs and branches and to be robust
against noise introduced by the sensor and the odometry
while retaining real-time performance.

De Conto et al. [6] proposed an effective algorithm to
achieve this robustness by first filtering outliers using the
Hough Transform [10] applied to circles [7] and then to fit
a circle in the least squares sense to the remaining points.
Using the Hough Transform, one can detect circular shapes

in a bitmap of edges by using circles of variable centers and
radii to vote within a discretized Hough space. For circles,
the Hough space is three-dimensional with two coordinates
for the circle center and one for the radius.

To apply the Hough Transform to our point cloud setting,
one has to rasterize the points by aggregating them into a
bitmap. In our experiments, desirable results required fine
rasterization, which incurred high memory and computa-
tional costs. To mitigate this, we opted to use the sampling-
based Randomized Hough Transform (RHT) [1], [30], which
Jiang et al. [13] have demonstrated to be very efficient for
fitting circles.

To implement RHT, we sample triplets of points and
explicitly fit circles to them, which we call triplet-circles.
Inspired by [13], we employ density-weighted sampling
where points with close neighbors are more likely to be part
of a triplet. We transform all triplet-circles into the Hough
space where they form a set of votes PHough following the
Hough paradigm. The optimal circle fit is then found by
locating the point CHough in the Hough space, where the most
votes are concentrated. To find this point, we represent PHough
in an octree which allows us to efficiently find the point in
PHough with the most neighbors within a sphere SCHough of
fixed radius around it (Fig. 4). We demonstrate the benefit
of using RHT over different outlier rejection mechanisms in
Sec. IV-C.1.

To optimize computational efficiency, we constrain the
Hough space to consider only circles close to the previous
circle in the x-y plane of M. For this to work reliably, we
need a robust initialization, which we achieve by using a
non-maximum suppression (NMS) on the first three recon-
structions.

To combine circle estimates from the individual clusters
into a single estimate of the trunk’s cross-section, we follow
the approach of Hyyppä et al. [12] by translating the sliced
tree clusters such that the centers of the Hough-circles align.
After alignment, we merge the sliced clusters into a single
point cloud to which we fit the final circle in the least-squares
sense, for which Bullock et al. [4] proposed an explicit
algorithm.

For visualization purposes, we also generate canopy
meshes. These can be efficiently computed by fitting a
convex hull to all canopy points. We treat points more than
2 m away from MMglobal

DTM and greater than twice the diameter
away from the stem axis as canopy points.

Once reconstructions of terrain and trees are available, we
visualize them in real-time, which enables assessment of the
scanning quality and the coverage of the plot. Immediately
after the mapping session ends, we export the results into an
industry-standard representation for a marteloscope.

IV. EXPERIMENTAL EVALUATION

The focus of this work is the implementation of a real-
time pipeline that reconstructs individual trees and extracts
their tree traits. We present our experiments to show the
capabilities of our method and to support our key claims,
which are: (i) The extraction of relevant tree traits with
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Fig. 4: Point cloud PHough of triplet-circles represented
in the Hough space. At a point CHough with a sphere
SCHough around it containing many triplet-circles, a
good circle fit can be found.

Plot Conifer Mixed Deciduous All
Detection Recall ↑ 98.3% 98.6% 97.4% 98.1%

DBH
RMSE [cm] ↓ 1.18 2.22 2.38 1.93
Bias [cm] ↓ 0.02 0.34 2.05 0.65
Std [cm] ↓ 1.17 2.18 1.04 1.81

RMSE
Stem

Diameter [cm] ↓ 2.91 3.14 3.12 3.02
Center [cm] ↓ 5.78 9.56 14.88 8.05

Mean
Height

Ours [m] ↑ 8.36 6.30 3.30 6.12
TLS [m] ↑ 17.16 15.22 5.94 10.22

TABLE II: Evaluation of our pipeline on three different plots. We
report the RMSE of DBH estimates (relative to manual measure-
ments) and the RMSE of the stem diameter and curvature measured
along the entire stem (relative to a TLS based model). Additionally,
we measured the mean height of the reconstructed stems and the
detection recall of the clustering algorithm.

accuracy competitive to state-of-the-art approaches, (ii) the
generation of a globally consistent map of the forest, (iii)
the robust fitting of oblique cone frustums to the trees in the
presence of heavy sensor noise (iv) the ability to run on a
mobile system.

A. Tree Trait Estimation Accuracy

The first experiment evaluates the quality of our re-
constructions and demonstrates that we can estimate tree
traits with accuracy competitive with the state of the art.
We considered three plots located in a forest in Stein am
Rhein, Switzerland consisting of coniferous (58 trees), broad-
leaf (163 trees) and a mixture of the two (70 trees). We
expect conifer trees with large diameters and a sparse under-
canopy to be easier to reconstruct than broad-leaf trees with
more vegetation close to the ground as well as a complex
branching structure.

The campaign was executed in March 2023 which in-
volved MLS scanning with our Mobile Mapping System and
manual measurements of the DBH by a team of professional
foresters. We use these manual measurements as a ground
truth to compare our DBH estimates to. We also want to
assess the location of the stem’s center as well as the
diameter of the tree trunk along the entire height, which
we call stem curve. For this assessment, we need more
descriptive measurements, which we obtain by building tree
models from TLS scans with a resolution of 1 cm. For this
experiment, we evaluated our system by simulating online
data acquisition and tree reconstruction after data acquisition
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Fitted
Circles

Pointcloud

Pointcloud
Slices

Fig. 5: Stem reconstruction
as a stack of oblique cone
frustums.
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Fig. 6: Scatter plots of the DBH
estimates of our reconstructions
against reference measurements.

has ended.
1) Detection Recall: We started by evaluating our clus-

tering algorithm to determine if we were able to detect all
the trees present using the MLS data. As reported in Tab. II,
our method was able to detect 98.08 % of all trees.

2) DBH Estimation: Next, we assessed the accuracy of
our DBH estimates. For ground truth, we used the manual
reference measurements of the tree diameters conducted
by the foresters at a height of 1.3 m above the ground,
which we associated with the MLS scans using an AprilTag-
based matching system. We report the results in Tab. II and
visualize the results in Fig. 6. As expected, Tab. II shows
that estimates for conifer trees are the most accurate with an
RMSE of 1.18 cm, while the broad-leaf trees are the most
challenging with an RMSE of 2.38 cm. The mixed plot is in
between with an RMSE of 2.22 cm.

3) Stem Curve Estimation: Additionally, we evaluated
the accuracy of our estimates of the entire stem curve by
comparing our circle centers and diameters along the stem to
tree models based on the TLS measurements. To build these
models, we sliced the TLS tree clouds at regular intervals,
annotated stem points and fitted circles to them in the least-
squares sense. In Tab. II, we report an RMSE of diameter
estimates along the stem of 3.02 cm and an RMSE of the
stem curvature of 8.05 cm—averaged over all plots.

4) Tree Height: Finally, we compared the heights of the
reconstructed stems. For the TLS measurements, the stem
cross-section could no longer be reliably estimated above
heights of 10.22 m, our reconstructions could only estimate
up to an average height of 6.12 m (Tab. II). We attribute this
to the sensor configuration, which has a limited field of view
and thus cannot measure high up the tree.

B. Global Consistency

We designed the second experiment to demonstrate the
importance of having a SLAM system ensuring globally
consistent maps. For that, we let the pipeline run on the
conifer plot again, but this time we disabled the trajectory
updates in the Tree Manager. We did not disable the loop
closures for the SLAM system, as drift accumulated over
the entire trajectory would have made tree associations



Fig. 7: Incorrect tree association
prior to a loop closure. Unique
trees are represented as two dif-
ferent instances (different hues).

Without
Loop Closures

With
Loop Closures

Fig. 8: Misaligned cluster
point clouds due to odometry
drift. Loop closure corrections
are able to realign them.

RMSE [cm] DBH Stem Curve Stem Diameter
w/o loop closures 5.85 35.61 3.76
w/ loop closures 1.18 4.65 2.82

TABLE III: Comparison of running the pipeline with or without
loop closures. Evaluated is the RMSE in the fitting of DBH, stem
curve and stem diameter. All results are averaged over three runs.

impossible. This implies that this experiment only considers
the effect of the odometry drift in between loop closures.

Visually, the misalignment of the point clouds is shown in
Fig. 8, but because of the realignment procedure described
in Sec. III-E, our pipeline could still reconstruct stems.

A second effect is the failure of our pipeline to reliably
merge tree clusters into a single tree instance (Fig. 7). This
is due to the odometry drift being larger than our distance
threshold for merging.

Ultimately, disabling loop closures in the tree manager
should cause a reduction in the quality of the stem curve,
which becomes apparent in Tab. III. We report a significant
decrease of the RMSE in fitting the stem curve, which is to
be expected if the point clouds are severely misaligned.

C. Ablations

We designed a third set of experiments to demonstrate the
benefit of other central components of our pipeline and their
impact on reconstruction quality.

1) Randomized Hough Transform: To demonstrate the
advantage of the Randomized Hough Transform (RHT)
algorithm, we compared it with the classical Hough algo-
rithm, regular RANSAC fitting [9], and RANSAC*, where
we applied the density-weighted subsampling procedure as
described in Sec. III-E. For RANSAC and RHT we used 500
algorithm iterations.

In Tab. IV, we report the RMSE of the DBH estimates for
all ablations averaged over three runs on all three datasets.
RHT outperforms the alternatives in terms of RMSE. Regard-
ing timing, the classical Hough algorithm is faster, which we
attribute to a less expensive mechanism for vote aggregation
in the Hough space.

In Fig. 9, we present a qualitative analysis to give an
intuition for why regular RANSAC and the Hough algorithm
are inferior. Firstly, the Hough algorithm tends to overesti-
mate the diameter of a cluster. Secondly, regular RANSAC

Algorithm RMSE [cm] Time
[ms]Conifer Deciduous Mixed All

Hough 8.43 12.45 5.22 7.68 115
RANSAC 5.81 3.48 2.69 4.27 247

RANSAC* 2.78 3.88 2.67 3.26 275
RHT 1.18 2.38 2.22 1.93 191

TABLE IV: Ablation study for different variants of robust circle
fitting. We report the RMSE of the DBH estimates for the different
versions averaged over three runs across all three of our datasets.
We also report the timing of the algorithms.

Hough RANSAC RHT
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Fig. 9: Examples of circle estimates on two point clouds with noise.
The Ransac and Hough circle fit overestimates the diameter. RHT
is able to fit the circle more accurately. The TLS circle fit is shown
in orange. Note that the black points represent points from different
clusters as in Fig. 8

.

struggles in the presence of branches or other sources of
noise. We attribute both of these phenomena to the low
sampling density of our point clouds, which increases the
relative impact of noise. This biases the inlier counting
mechanism of Hough and RANSAC towards larger circles.
Meanwhile, RHT with a more robust mechanism for inlier
detection, does not suffer from this bias.

2) Coverage Angle: This experiment was conducted to
support our assumption that larger coverage angles, i.e. the
range of directions the tree is scanned from, are beneficial
for reconstruction quality. We reconstructed every tree of the
three plots several times, each time removing clusters and
noting the reduced coverage angle. We grouped results in
buckets of 20◦ increments and for each bucket computed
the RMSE of diameter estimates along the stem curve with
respect to the TLS dataset. We note a clear trend where
increasing the coverage angle decreases the error of the
estimate (Fig. 10).

This suggests that moving the sensor through the plot and
measuring the trees from different angles is beneficial for
accurate stem reconstruction.

D. Performance

This experiment explores the computation time of the real-
time pipeline. We evaluated the runtime on a Simply NUC
Topaz 3 featuring a Core i7-1165G7 with 4 cores, a base
frequency of 2.8 GHz, and 32 GB of RAM. Payload clouds
are accumulated over 20 m, which on average took 19.8 s.
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Fig. 10: Accuracy of the DBH estimates as a function of coverage
angle. As more of the tree is observed the DBH RMSE decreases.

Conifer Deciduous Mixed
Memory 5.18 GB 6.75 GB 5.15 GB

Storage w/ clouds 158.0 MB 187.7 MB 143.1 MB
w/o clouds 1.5 MB 9.2 MB 8.0 MB

TABLE V: Memory (during runtime) and Storage requirements
(afterwards) for final output data (with and without storing the point
clouds for every tree).

Fig. 12 presents the average runtime of the components
of our pipeline for our different datasets. With an overall
mean runtime of 9.69 s and a standard deviation of 4.41 s,
the algorithm is able to run approximately twice as fast as
the capture frequency. Note that processing the deciduous
plot consumes more time than the other two, which is
due to the higher tree stem density. Across all datasets,
the computationally most expensive component is the Tree
Manager, which handles the reconstructions.

We also report system memory usage (Tab. V) which, with
an average of 5.69 GB, is well within the capabilities of our
system. Perhaps the biggest advantage of our approach is
in storage space. The average storage requirements of the
final output data are in the range of 160 MB for 0.7 hectare
including the point clouds of every tree, and only 6 MB
when storing just the reconstruction results. This compares
to 13.5 GB for the raw data and hundreds of gigabytes for a
traditional TLS system, which makes our system three orders
of magnitude more efficient in terms of storage. This detail
is critical as data acquisition is arduous and done in remote
locations. Furthermore, compared to the intrinsic value of
the raw measurements, the cost of storage is immense.

E. Real-time Demonstration on ANYmal Robot

In order to demonstrate this capability running live on a
robot, we carried out a field trial in the Forest of Dean,
UK. We used the ANYmal quadruped robot to autonomously
carry the Mobile Mapping System through the forest with
all reconstructions carried out in real-time and visualized
online. This demonstration is presented in Fig. 11 and the
supplementary video. (A complete description of the robot
autonomy system is outside the scope of this paper.)

V. CONCLUSION

In this paper, we presented a novel approach for real-time
tree inventory and reconstruction in forest environments. Our
method incrementally reconstructs hectare-sized forest plots
by accumulating a local submap (a payload) and clustering

Fig. 11: Fully autonomous mission through a plot of the Forest of
Dean with the ANYmal quadruped autonomously navigating the
forest following a lawnmower pattern. On board the Mobile Robot,
our pipeline created an online forest inventory which was visualized
for the operators in real-time. Note the pose graph (green) being
corrected using loop closures (red).
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Fig. 12: Runtime of individual components of our pipeline given
by mean and standard deviation. With a time budget of 19.8 s per
payload, our approach runs almost twice as fast as required.

and reconstructing tree instances within it. Payloads are
incrementally merged and global consistency of the full map
is maintained by leveraging a pose graph SLAM system.

Compared to other state-of-the-art methods that compute
the result in post-processing, our approach produces a dataset
of tree instances and tree traits (such as the DBH and
stem curve) during data acquisition. Additionally, we can
report the state of the reconstruction in real-time, helping
the forester—or an autonomous robot—to adjust the mission
to e.g. increase coverage for better reconstructions.

We evaluated our pipeline on three forest datasets with
different compositions and showed that we can estimate tree
traits with an accuracy competitive with the state of the
art. Averaging across deciduous and conifer plantations, our
method achieved an RMSE for DBH estimates of 1.93 cm.

Focusing on conifer plantations, our accuracy was mea-
sured as 1.18 cm while a state-of-the-art method from
Hyyppä et al. achieved an RMSE of 0.6 cm [11]. We note that
our approach due to its realtime nature required significantly
less computation time as well as an order of magnitude
cheaper hardware.

Using our three datasets we supported all claims made in
this paper. The experiments suggest that online estimation of
tree traits is feasible and can deliver faithful reconstructions
of trees. For further development, our pipeline is a good
starting point to use other sensor modalities to estimate more
tree traits such as the tree species from RGB images. Fur-
thermore, the biggest drawback of little scanning density for
high-up regions of the tree could be addressed by specifically



adding a LiDAR sensor for scanning deeper into the canopy.
Considering the light weight of the pipeline as well as

the Mobile Mapping System itself, we believe that with
improvements in remote sensing hardware, building online
forest inventories can be a valuable tool to quickly generate
accurate models of forests.
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[11] E. Hyyppä, J. Hyyppä, T. Hakala, A. Kukko, M.A. Wulder, J.C.
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