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1 Introduction

Forests are key elements of our ecosystems [1] as they support critical processes like
carbon sequestration and biodiversity while also providing resources for industries and
offering opportunities for human leisure [1], [2]. Preserving such important ecosystems
is essential. Foresters need precise information about forests to make effective and
informed decisions on forestry management that potentially materialize only in the
coming decades. Such information includes tree counts, species distributions, and
essential geometric traits such as the “diameter at breast height”, or DBH, which
constitute a forest inventory.

Traditionally, humans perform labor and time-intensive field experiments to collect
tree-by-tree measurements in sample plots, which are then aggregated to plot-level
means and totals [3]. The prospect of forestry robotics is the automation of this
data collection, monitoring, and trait computation at a larger scale than traditionally
possible, potentially realizing even automated maintenance and tree harvesting in the
future. Foresters could then use such detailed inventories to make accurate forecasts
of stand growth, plan harvesting strategies, optimize species rotation cycles, and more,
contributing to effective and sustainable foresting practices [4], [5].

Despite increasing interest in forestry robotics, only a few real-world robotics
datasets and benchmarks are available in this important domain. This makes the
development of new techniques and the comparison to existing ones difficult. Datasets
and associated benchmarks are the driver of innovation and reproducible research in
computer vision and robotics. Seminal datasets [6]–[9] allowed to push the boundaries
of image-based semantic interpretation, and enabled to measure quantitatively the
progress in the field. Datasets targeted specifically at perception in robotics [10]–[15]
laid the foundation for developing innovative approaches for LiDAR-based perception.
Realistic, domain-specific datasets are often a crucial foundation for developing innova-
tive solutions and approaches as they provide novel challenges and characteristics that
cannot be efficiently solved by off-the-shelf solutions [16]. Additionally, domain-specific
datasets allow researchers to investigate research questions on a common basis and
compare different approaches.

In the past decade, forestry monitoring has increasingly relied on LiDAR point
clouds acquired with terrestrial laser scanners (TLS) [3], [17] or airborne laser scan-
ning [18]. In this deliverable, we instead target data acquisition with a sensor setup
enabled by conventional LiDAR scanners commonly used in robotics. They can be
carried easily by a robot or be integrated into a sensor backpack. Furthermore, it does
not require trained personnel to properly place a TLS or pilot a drone (see Fig. 5).
Compared to terrestrial laser scanners, such LiDAR sensors are often inferior in terms
of accuracy and density of measurements. However, they are more affordable and
more flexible in terms of mobility, allowing for significantly larger spatial coverage
than TLS. Compared to airborne scanning, they also enable capturing important
below-canopy trunk detail that can be used for estimating essential parameters like
DBH, a parameter widely considered the most crucial in forestry [3].

This deliverable of the DigiForest project aims to change this current situation
and provides a longitudinal dataset for forestry robotics. We provide LiDAR data
recorded in real forests multiple times across different seasons with commonly used
LiDAR sensors employed in robotics. The repeated measurements of the same plots are
spatially aligned in a common reference frame, furthermore enabling the potential to
study long-term mapping [19] and semantic interpretation in unstructured, cluttered,
and changing environments. We provide also LiDAR data recorded with a drone,
covering a much larger swathe of the forest. This is aligned with data from the plots
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Figure 1: This deliverable provides a longitudinal dataset of multiple forest plots
recorded with a mobile LiDAR scanning system. The data has been recorded in three
different seasons: Spring, Autumn, and Summer, with very different appearances in
terms of vegetation. Besides a semantic annotation of the data into tree, shrub, and
ground shown in (a), we also provide fine-grained annotations of stem and canopy of
trees shown in (b), and instance annotations for trees shown by different colors in (c).

recorded with the backpack-carried sensors, achieving a more complete and combined
ground-aerial perspective of the forest. Together with the LiDAR data, we provide
also a forest inventory for all reference trees from one of the recording sessions. The
chosen forest in Switzerland also provides a challenging application due to its wide
variation of environmental characteristics (e .g., from flat to steep terrain), forest
stands (e .g., conifers, mixed and broadleaf forests) and silvicultural management
practices (e .g., even-aged and uneven-aged forests). To the best of our knowledge, this
is the first dataset that allows for investigating panoptic segmentation in real forestry
environments using commercial robotics LiDARs. An example of the annotations in
the dataset is shown in Fig. 1.

In summary, through this deliverable, we provide: (i) a longitudinal forest dataset
recorded using common robotics sensors in three different growth periods that are
spatially aligned in a common reference frame, (ii) semantic annotations of point
clouds that include high-level semantics of tree, shrub, and ground, instance-level
annotations of the trees, and fine-grained semantics of stem and canopy, (iii) reference
measurements of tree traits by domain experts in forestry. Complementary to the
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Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community
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Figure 2: Overview of the forests near Stein am Rhein, Switzerland with the different
plots that we recorded in our field trials.

data, we provide a public semantic interpretation benchmark. The evaulation is
carried out on a benchmark server with a hidden test set enabling the unbiased
comparison of approaches targeted at performing tasks relevant for forestry robotics.
This deliverable corresponds very closely to the attached preprint (see Appendix A)
which has been submitted by the co-authors to the IEEE International Conference on
Robotics & Automation (ICRA), 2025. The dataset from this deliverable is available
at https://digiforest.eu/datasets.

2 Data Collection

All data provided in this deliverable has been collected during multiple visits of a
forest near Stein am Rhein, Switzerland, where forestry experts selected several plots
that show different levels of complexity in terms of traversability and clutter, but also
differ in forest types, species and silvicultural management regimes. We provide the
raw data consisting of ROS bags of all data collection campaigns, but also provide
post-processed aggregated scans that we annotated with labels relevant in forestry
robotics applications.

The selected forest stands are either conifer-dominated (e .g., spruce and larch),
broadleaf-dominated (e .g., beech), or mixed (e .g., linden, pine and larch), and the
regeneration and ground coverage with vegetation varies from sparse and low to dense
and high. Fig. 2 shows a map visualization where individual plots are identified by
a plot number prefixed by a letter corresponding to the most dominant tree family,
i .e., “D” for deciduous, “C” for coniferous, and “M” for mixed plots with both kinds
of trees.

We collected data in different growth periods, specifically: March 2023, October
2023, and July 2024. The data was collected with a backpack mounted sensor package
consisting of a Hesai XT32 LiDAR inclined at 45 degrees (March 2023), and a Hesai
QT64 horizontally aligned (October 2023). In July 2024, we collected data with
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(a) (b)

Figure 3: (a) The employed backpack sensor package consisting of the Hesai XT32,
the cameras, and the GNSS receiver for geo-referencing the collected data. (b) Aerial
drone equipped with a Velodyne HDL-32E in motion recording data.

a combination of a horizontally aligned Hesai QT32 and a Hesai XT32 inclined at
45 degrees to ensure maximum coverage of the tree stems and tree canopy. The sensor
package was additionally equipped with a GNSS receiver for geo-referencing the data
and multiple cameras were employed for visual odometry. A schematic of the sensor
package used is shown in Fig. 3a.

Additionally, for the March 2023 and July 2024 campaigns we used a UAV-mounted
LiDAR sensors to record aerial data offering better canopy representation covering
the entire forest region shown in Fig. 2. For the March 2023 campaign we flew a JDI
Matrice M600 equipped with a sideways mounted Velodyne HDL-32E (see Fig. 3b)
and for the July 2024 campaign a Hesai XT-32M2X was used. We used on-board RTK
GPS to globally geo-reference the drone via GNSS poses.

Reference measurements were carried out during the March 2023 campaign. We
tagged individual trees with AprilTags [20] to ease the process of associating the
manual measurements with the recorded data by automatic detection of the AprilTags
using the camera streams (see Fig. 4). Forestry experts from the Swiss Federal Institute
for Forest, Snow, and Landscape Research (WSL) conducted manual measurements of
tree DBH, length of clear wood, height of first green branch, tree species and more,
allowing a tree-specific data association through the AprilTags. This forest inventory
is provided along with the rest of the dataset.

We provide the raw data collected during these field campaigns as we see opportu-
nities to use the data to investigate LiDAR odometry in cluttered and unstructured
environments, which is challenging for conventional LiDAR odometry approaches
working well in context of urban environments [21]. In particular, the high-frequency
motion profile of a backpack-carried sensor combined with the limited field of view
inside the forest due to occlusions poses a challenge for LiDAR-only approaches. Loop
closure detection is challenging in forests [22], where domain-specific approaches could
provide more robust and accurate results. Examples of the challenging conditions in
which data was recorded for this deliverable are shown in Fig. 5.
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Figure 4: For association of reference measurements by forestry experts and trees
in the forest recorded by our sensors, we used AprilTags [20] to identify the trees
automatically in the recorded data and correlate this with recorded measurements.

3 Data Post-Processing and Annotation

Through this DigiForest deliverable, we provide a forestry dataset of raw LiDAR data
along with post-processed results in the form of locally aggregated maps, which will
be useful for researchers. Additionally, we use SLAM results to semantically annotate
multiple LiDAR scans simultaneously, facilitating a dataset suitable for deep learning
research. The following subsections detail our approach to both tasks.

3.1 Post-Processing

The collected data was post-processed to generate aggregated point cloud maps,
enabling semantic interpretation and trait estimation approaches to work with data
completely covering the stem region of trees. We aligned the recorded data using a pose
graph optimization, fusing LiDAR, IMU, and visual odometry to recover the trajectory
walked in the forests. For this purpose, we employed the VILENS system [23] to
recover individual per-plot trajectories and provide the poses generated by VILENS in
addition to the raw data.

A key contribution of our dataset is the spatial alignment of trajectories and point
clouds across seasons. To achieve sequence-to-sequence alignment across different
data collection seasons, we jointly optimized a pose graph over an individual plot’s
trajectories from all sessions, globally aligning all point clouds spatially. A crucial
step in this process involved identifying loop closures between different sessions using
Logg3dNet [24], which demonstrated reliable and robust performance in forestry
environments [22]. Fig. 6 illustrates the result of spatial alignment for plot M2.

Additionally, we provide corresponding reference aerial data for each plot. The
aerial point cloud data is registered with the MLS point cloud, offering complementary
coverage with better canopy representation. For aligning the two point clouds sources,
we use the GNSS poses from the backpack-carried and the RTK poses from the UAV
as a source of initial registration. To align these two point cloud sources, we use the
GNSS poses from the backpack-carried system and the RTK poses from the UAV as
an initial guess. We then refine this alignment using trunk locations extracted from
both aerial and backpack scans as constraints. Following the approach of Casseau et
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(a) (b)

Figure 5: We collected data with the backpack-carried sensor payload in multiple
challenging forest environments, with the plot in (a) showing a steep incline and (b)
showing dense vegetation and cluttered trees.

al. [25], we jointly optimize these in a factor graph-based formulation that combines
local and global constraints. Qualitative results of this alignment are shown in Fig. 7.

3.2 Annotation

For annotation, we manually labeled and verified all sequences using an extension of the
point cloud annotation tool developed originally for creating the SemanticKITTI [12]
dataset. For labeling forests, we extended the tool with the capability to label tree
instances directly with further improvements to allow an accurate labeling of the
unstructured and cluttered forest environment. Following the procedure that was
successful in annotating the SemanticKITTI dataset, we also used here a tile-based
annotation which reduced the complete trajectory into overlapping tiles.

From our experience, the unstructured and cluttered nature of the forest was more
challenging than annotating urban environments, where often whole parts of the street
surface or buildings could be easily labeled via simple shape primitives. Labeling
trees required fine brush-based annotations and the labeling time depended heavily
on the amount of trees visible in a recording. To speed up labeling, we employed a
cloth simulation based ground filtering [26] that allowed to obtain an initial ground
segmentation. Later, we manually corrected the automatic ground segmentation to
ensure the quality of ground labels.

For tree annotation, we concentrated on larger trees with thicker stems, which
are also more relevant for forestry operations and harvesting. We first labeled clearly
identifiable tree instances, gradually reducing visual clutter in the scene and making
it possible to later label more challenging parts of the forests. We also labeled each
tree instance into stem and canopy points. Both classes are important for estimating
parameters like DBH and crown volume respectively, which are crucial for forest stand
growth studies and more in forest ecology [27]. Shorter, close-to-ground, vegetation in
the scene was assigned the shrub label. The density of the shrub class varied across
the different plots where data was recorded.

Data was recorded across three different seasons and we first focused on labeling
the March 2023 session of the data. Where possible we then exploited the spatial
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Figure 6: (Top) Visualization of spatially aligned trajectories for the M2 plot. (Bottom)
Side view of the combined point cloud from three data collection sessions showing
accurate co-registration. Green, blue and red points correspond to scans from March
2023, October 2023 and July 2024 missions respectively.

alignment of the LiDAR data detailed in Sec. 3.1 to transfer labels from one timestamp
to another via nearest neighbor assignment. This produced a coarse labeling of the
data form October 2023 and July 2024. An additional round of clean-up and validation
ensured that we have complete and accurate annotations, especially for parts where
the vegetation grew over time.

Overall, we provide annotated point cloud data for six plots collected in March 2023,
October 2023, and July 2024. In Tab. 1, we provide plot-wise statistics of the number
of annotated trees, where the number can actually vary due to the different trajectories
walked while collecting the data. In total, we annotated 2,134 trees, including for each
tree stem and canopy information. We provide for for all reference trees of the March
2023 data individual reference measurements of tree species, diameter at breast height,
the length of clear wood, the height of the first green branch, and also qualitative
measures such as the number of bends, dead limbs, and the condition of the crown
(e .g., broken top, crown defects), which were manually measured and assessed by
forestry domain experts. In terms of label distribution, the annotated data contains
27.1% ground points, 22.8% shrub, 28.5% tree and 0.4% outlier points. 37.5% of the
tree points were labeled as stem and the remaining 62.5% as canopy or tree foliage.
Examples of such annotated data are shown in Fig. 1

For training deep-learning approaches, we split the data provided here into the
following proportions. The training set includes the full temporal sequence (March 2023,
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(a) (b)

Figure 7: Combination of the (a) aerial point cloud recording of the Stein am Rhein
forest region into (b) a complete above-canopy (blue) and below-canopy (yellow) point
cloud using the backpack LiDAR data (yellow).

Table 1: Statistics of number of trees annotated for all plots

Plot
Number of trees

Mar 2023 Oct 2023 Jul 24

C1 275 130 166
D2 157 155 156
M1 256 - -
M2 95 137 157
M3 229 - -
M5 221 - -

Sum 1233 422 479

October 2023, July 2024) for plot D2, and plots M1, M3, M5 from the March 2023
data. The validation set, used for selection of hyperparameters, includes the full
temporal sequence of plot C1. The test set includes the full temporal sequence from
plot M2. This selection leads to a clear seperation of recording locations across the
three splits and for the test set to see a mixture of tree species and distributions,
allowing to test the generalization performance of learning-based models. In summary,
we provide 6 plots for training, 3 plots for validation, and 3 plots as test set, with each
set including one full temporal sequence of data.

4 Conclusion

In this deliverable, we presented a novel forestry dataset providing longitudinal data
of forestry environments for robotics research. Together with the data recorded with a
backpack-carried and drone-carried rotating LiDAR sensors frequently used in robotics,
we provide annotated point clouds that allow to investigate semantic interpretation
and tree trait estimation in forestry. The provided data is complemented by a semantic
interpretation benchmark task, where we provide server-sided evaluation on a hidden
test set enabling the unbiased comparison of approaches targeted at performing tasks
relevant for forestry robotics.

Besides the envisioned applications, we see the prospect to investigate with this
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data further tasks, such as LiDAR-based odometry in unstructured and cluttered
environments, better approaches for loop closure, and temporal data association to
enable the tracking of traits for forestry monitoring applications.
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DigiForests: A Longitudinal LiDAR Dataset for Forestry Robotics
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Fig. 1: We provide a longitudinal dataset of multiple forest plots, called DigiForests, recorded with a mobile LiDAR scanning system. The
data has been recorded in three different seasons, Spring, Autumn, and Summer, with very different appearance in terms of vegetation.
Besides a semantic annotation of the data into tree, shrub, and ground shown in (a), we also provide instance annotations for trees shown
by different colors in (b), and fine-grained annotations of stem and canopy of trees shown in (c). Best viewed in color.

Abstract— Forests are vital to our ecosystems, acting as
carbon sinks, climate stabilizers, biodiversity centers, and wood
sources. Due to their scale, monitoring and managing forests
takes a lot of work. Forestry robotics offers the potential for
enabling efficient and sustainable foresting practices through
automation. Despite increasing interest in this field, the scarcity
of robotics datasets and benchmarks in forest environments is
hampering progress in this domain. In this paper, we present
a real-world, longitudinal dataset for forestry robotics that
enables the development and comparison of approaches for
various relevant applications, ranging from semantic interpre-
tation to estimating traits relevant to forestry management. The
dataset consists of multiple recordings of the same plots in a
forest in Switzerland during three different growth periods.
We recorded the data with a mobile 3D LiDAR scanning
setup. Additionally, we provide semantic annotations of trees,
shrubs, and ground, instance-level annotations of trees, as well
as more fine-grained annotations of tree stems and crowns.
Furthermore, we provide reference field measurements of traits
relevant to forestry management for a subset of the trees.
Together with the data, we also provide open-source baseline
panoptic segmentation and tree trait estimation approaches
to enable the community to bootstrap further research and
simplify comparisons in this domain.

The author is with: 1Center for Robotics, University of Bonn, Germany,
2University of Oxford, UK, 3Technical University of Munich, Germany,
4PreFor Oy, Finland, 5Swiss Federal Institute for Forest, Snow and Land-
scape Research, Switzerland, 6Lamarr Institute for Machine Learning and
Artificial Intelligence, Germany. ∗ indicates equal contribution.

This work has been funded by the European Union’s Horizon
Europe research and innovation programme under grant agreement
No 101070405 (DigiForest), by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy,
EXC-2070 – 390732324 – PhenoRob and by the Swiss State Secretariat for
Education, Research and Innovation (SERI).

I. INTRODUCTION

Forests are key elements of our ecosystems [14] as they

support critical processes like carbon sequestration and bio-

diversity while also providing resources for industries and

offering opportunities for human leisure [14], [31]. Preserv-

ing such important ecosystems is essential.

Foresters need precise information about forests to make

effective and informed decisions on forestry management

that potentially materialize only in the coming decades. Such

information includes tree counts, species distributions, and

essential geometric traits such as the “diameter at breast

height”, or DBH, which constitute a standard forest inven-

tory. Traditionally, humans perform labor and time-intensive

field experiments to collect tree-by-tree measurements in

sample plots, which are then aggregated to plot-level means

and totals [25]. The prospect of forestry robotics is the au-

tomation of this data collection, monitoring, and trait compu-

tation at a larger scale than traditionally possible, potentially

realizing even automated maintenance and tree harvesting in

the future. Foresters could then use such detailed inventories

to make forecasts of stand growth, plan harvesting strategies,

optimize species rotation cycles, and more, contributing to

effective and sustainable foresting practices [19], [34].

Despite increasing interest in forestry robotics, only a few

real-world robotics datasets and benchmarks are available

in this important domain. This makes the development of

new techniques and the comparison to existing ones difficult.

Realistic, domain-specific datasets are often a crucial foun-

dation for developing innovative solutions and approaches as



TABLE I: Dataset characteristics of LiDAR-based forest datasets. Sensors lists for each dataset the primary LiDAR sensor that can be
used for investigating semantic interpretation and tree trait estimation. Meta data lists the availability of tree traits in the dataset.

Name Sensors Tree Count Number of Classes Tree Instances Multi-Session Meta Data

WildScenes [42] Velodyne VLP-16 (MLS) N/A 15 - ✓ -

TreeScope [6] Ouster OS1-64 (UAV)
Ouster OS0-128 (MLS)

N/A 2 - - ✓

FOR-Instance [37] Riegl MiniVUX-1 (UAV)
Riegl VUX-1 (UAV)

1,130 5 ✓ - ✓

DigiForests (Ours) Hesai XT32 (MLS)
Hesai QT64 (MLS)

2,134 5 ✓ ✓ ✓

they provide novel challenges and characteristics that cannot

be efficiently solved by off-the-shelf solutions [39]. Such

datasets allow researchers to investigate research questions

on a common basis and compare different approaches.

In the past decade, forestry monitoring has increasingly

relied on LiDAR point clouds acquired with terrestrial laser

scanners (TLS) [25], [44] or airborne laser scanning [37].

This work targets data acquisition with a sensor setup

enabled by conventional LiDAR scanners commonly used

in robotics. They can be carried easily by a robot or be

integrated into a sensor backpack. Furthermore, it does not

require trained personnel to properly place a TLS or pilot

a drone. Compared to TLS, such LiDAR sensors are often

inferior in terms of accuracy and density of measurements.

However, they are more affordable and more flexible in

terms of mobility, allowing for significantly larger spatial

coverage than TLS. Compared to airborne scanning, they also

enable capturing important below-canopy trunk detail that

can be used for estimating essential parameters like DBH, a

parameter considered the most crucial in forestry [25].

This paper aims to change this current situation and

provides a longitudinal dataset for forestry robotics. We

provide LiDAR data recorded in real forests with commonly

used LiDAR sensors employed in robotics. Furthermore, we

acquired the data by working together with robotics and

forestry experts over extended periods of time. Together with

the raw data, we provide semantic annotations, trait refer-

ence data, and two open-source baseline implementations.

This enables the investigation of LiDAR-based semantic

and panoptic segmentation approaches, as well as tree trait

estimation approaches in forestry environments. An example

of the annotations in the dataset is shown in Fig. 1.

The main contribution of this paper is a new, longitudinal

forestry dataset using robotic LiDAR sensors. We provide

the raw LiDAR scans as well as locally aggregated point

clouds of forest plots recorded multiple times across different

seasons. The repeated measurements of the same plots are

spatially aligned in a common reference frame, furthermore

enabling the potential to study long-term mapping [20] and

semantic interpretation in unstructured, cluttered, and chang-

ing environments. The chosen forest in Switzerland also

provides a challenging application due to its wide variation of

environmental characteristics (e.g., from flat to steep terrain),

forest stands (e.g., conifers, mixed and broadleaf forests)

and silvicultural management practices (e.g., even-aged and

uneven-aged forests). To the best of our knowledge, this

is the first dataset that allows for investigating panoptic

segmentation in real forestry environments using commercial

robotics LiDARs.

In summary, we provide: (i) a longitudinal forest dataset

recorded using common robotics sensors in three different

growth periods that are spatially aligned in a common

reference frame, (ii) semantic annotations of point clouds

that include high-level semantics of tree, shrub, and ground,

instance-level annotations of the trees, fine-grained semantics

of stem and canopy, and reference measurements of tree traits

by domain experts in forestry, (iii) panoptic segmentation

baseline as well as a tree trait estimation approach as an

open source package to further bootstrap research in this

domain. Complementary to the data, we provide a public

semantic interpretation benchmark. The evaluation is carried

out on a benchmark server with a hidden test set enabling the

unbiased comparison of approaches targeted at performing

tasks relevant for forestry robotics. Our dataset and the (open

source) baselines will be released upon acceptance of the

paper.

II. RELATED WORK

Datasets and associated benchmarks are the driver of in-

novation and reproducible research in robotics and computer

vision. Seminal datasets [8], [10], [16], [26] allowed to push

the boundaries of image-based semantic interpretation, and

enabled to measure quantitatively the progress in the field.

Datasets targeted specifically at perception in robotics [1],

[4], [9], [27], [38], [46] laid the foundation for developing

innovative approaches for LiDAR-based perception.

With growing interest in forestry robotics, there have been

an increasing number of domain-specific datasets acquired

in forests [6], [12], [37], [42]. Besides datasets for tree

instance segmentation based on camera images [12], also

datasets using LiDAR sensors have been published [6], [37],

[42]. More specifically, the WildScenes dataset [42] provides

repetitive trajectories of the same forest roads with semantic

annotations of LiDAR points projected from image-based

annotations. TreeScope [6] provides LiDAR data recorded

with UAV and mobile laser scanning platforms with tree

stems semantically annotated on range images. While they

do provide point clouds of individual trees for evaluating

DBH estimation approaches, they do not provide instance

labels in a LiDAR map to evaluate instance segmentation ap-

proaches. Lastly, FOR-Instance [37] provides aerial LiDAR
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Fig. 2: Overview of the forests near Stein am Rhein, Switzerland
with the different plots that we recorded in our field trials of the
EU-funded project “DigiForest”.

data with semantic and instance annotations of point clouds

with multiple measurement campaigns in different forests.

They also distinguish so-called woody and live branches

but note that this distinction was quite challenging in their

data. While these datasets allow investigating challenging

problems in forestry robotics, WildScenes, for example, does

not include labels for tree instances or tree meta data which

could be used for exploring panoptic segmentation or tree

trait estimation approaches. While the FOR-Instance dataset

provides this, the data is collected with a UAV piloted above

the tree canopy, which can miss important tree trunk detail.

For forestry monitoring, several statistics are essential for

making forestry management decisions, e.g., in terms of

planting, thinning and harvesting. Among the most essential

characteristics are the tree species and the diameter at breast

height (DBH), but also economic factors like merchantable

stem length, first branch height, number of bends, which

determine the quality of cut wood. For tree counts and

determining the position of trees, a tree instance segmenta-

tion [36], [40] using geometric [28], [36] or learning-based

approaches [17] can be employed. Most approaches for DBH

estimation [13], [28] employ cylinder or circle fitting to tree

instance segmentation at a height of 1.3 m above ground.

In contrast to the aforementioned datasets for forestry envi-

ronments, summarized in Tab. I, we provide with DigiForests

a unique combination of characteristics that shows complete

semantic annotations with tree instance annotations of data

acquired with a robotics LiDAR sensor moving through real

forests. We also provide a fine-grained annotation of stems

and canopy, and a spatially consistent temporal dataset with

reference field measurements conducted by domain experts.

III. A DATASET FOR FORESTRY ROBOTICS

Our dataset was collected during multiple visits of the

same sites in a forest near Stein am Rhein, Switzerland.

We provide the raw data consisting of ROS bags of all

data collection campaigns, but also provide post-processed

aggregated scans that we annotated with labels relevant in

forestry robotics applications.

In this section, we describe the data collection including

the reference field measurements and the post-processing to

Fig. 3: For the DigiForests dataset, we recorded data with a
(left) backpack-carried sensor payload in (right) challenging forest
environments with the sensor payload highlighted in red (right).

generate the aggregated LiDAR point clouds. Furthermore,

we provide insights into the labeling process, which we

performed directly on the aggregated point clouds to ensure

high annotation quality on the data that we envision to be

used for testing semantic interpretation approaches. Lastly,

we summarize the statistics about our annotations to provide

a better impression of the provided data.

A. Data Collection

All data has been collected in a forest near Stein am

Rhein, Switzerland, where forestry experts selected several

plots that show different levels of complexity in terms of

traversability and clutter, but also differ in forest types,

species and silvicultural management regimes.

Thus, the selected forest stands are either conifer-

dominated (e.g., spruce and larch), broadleaf-dominated

(e.g., beech), or mixed (e.g., linden, pine and larch), and

the regeneration and ground coverage with vegetation varies

from sparse and low to dense and high. Fig. 2 shows a

map visualization where individual plots are identified by

a plot number prefixed by a letter corresponding to the

most dominant tree family, i.e., “D” for deciduous, “C” for

coniferous, and “M” for mixed plots with both kinds of trees.

We collected data in different growth periods, specifi-

cally: March 2023, October 2023, and July 2024. The data

was collected with a backpack mounted sensor package

consisting of a Hesai XT32 LiDAR inclined at 45 de-

grees (March 2023), and a Hesai QT64 horizontally aligned

(October 2023). In July 2024, we collected data with a

combination of a horizontally aligned Hesai QT32 and a

Hesai XT32 inclined at 45 degrees to ensure maximum

coverage of the tree stems and tree canopy. The sensor

package was additionally equipped with a GNSS receiver

for geo-referencing the data and multiple cameras were

employed for visual odometry.

Additionally, for the March 2023 and July 2024 campaigns

we used a UAV-mounted Velodyne HDL-32E and Hesai

XT-32M2X respectively to record aerial data offering better

canopy representation covering the entire forest region shown

in Fig. 2. This aerial data was aligned with the data from

the backpack Hesai sensors following the methodology of

Casseau et al. [5] and is provided in this dataset.

Reference measurements were carried out during the

March 2023 campaign. We tagged individual trees with



Fig. 4: (Top) Visualization of spatially aligned trajectories for
the M2 plot. (Bottom) Side view of the combined point cloud
from three data collection sessions showing accurate co-registration.
Green, blue and red points correspond to scans from March 2023,
October 2023 and July 2024 missions respectively.

AprilTags [33] to ease the process of associating the manual

measurements with the recorded data by automatic detection

of the AprilTags using the camera streams (see Fig. 3).

Forestry experts from the Swiss Federal Institute for Forest,

Snow, and Landscape Research (WSL) conducted manual

measurements of tree DBH, length of clear wood, height of

first green branch, tree species and more, allowing a tree-

specific data association through the AprilTags. This forest

inventory is provided along with the rest of the dataset.

We provide also the raw data collected during these field

campaigns as we see opportunities to use the data to investi-

gate LiDAR odometry in unstructured environments, which

is challenging for conventional LiDAR odometry approaches

working well in the context of urban environments [43]. In

particular, the high-frequency motion profile of a backpack-

carried sensor combined with the limited field of view inside

the forest due to occlusions poses a challenge for LiDAR-

only approaches. Loop closure detection is also challenging

in forests [32], where domain-specific approaches could

provide more robust and accurate results.

B. Post-Processing

The collected data was post-processed to generate aggre-

gated point cloud maps, enabling semantic interpretation and

trait estimation approaches to work with data completely

covering the stem region of trees. We aligned the recorded

data using a pose graph optimization, fusing LiDAR, IMU,

and visual odometry to recover the trajectory walked in the

forests. For this purpose, we employed VILENS [45] to

recover individual per-plot trajectories and provide the poses

generated by VILENS in addition to the raw data.

A key contribution of our dataset is the spatial align-

ment of trajectories and point clouds across seasons. To

achieve sequence-to-sequence alignment across different data

collection seasons, we jointly optimized a pose graph over

an individual plot’s trajectories from all sessions, globally

TABLE II: Statistics of number of trees annotated for all plots.

Plot
Number of trees

Mar 2023 Oct 2023 Jul 2024

C1 275 130 166
D2 157 155 156
M1 256 - -
M2 95 137 157
M3 229 - -
M5 221 - -

Sum 1,233 422 479

aligning all point clouds spatially. A crucial step in this

process involved identifying loop closures between different

sessions using Logg3dNet [41], which demonstrated reliable

and robust performance in forestry environments [32]. Fig. 4

illustrates the result of spatial alignment for plot M2.

C. Annotation

For annotation, we manually labeled and verified all

sequences using an extension of a point cloud annotation

tool developed originally for creating the SemanticKITTI

dataset [2]. We extended the tool to label tree instances

directly to allow an accurate labeling of the unstructured

and cluttered forest environments. Labeling forest scenes

was more challenging than annotating urban environments

and the labeling time depended heavily on the amount

of trees visible in a recording. To speed up labeling, we

employed a cloth simulation-based ground filtering [47] that

allowed to obtain an initial ground segmentation. Later, we

manually corrected the automatic ground segmentation to

ensure high quality of ground labels. For tree annotation,

we concentrated on larger trees with thick stems, which are

also more relevant for forestry operations and harvesting.

We first labeled clearly identifiable tree instances, reducing

visual clutter in the scene and making it possible to later

label more challenging parts of the forests. We also labeled

for each tree instance the stem and canopy points. Both

classes are important for estimating traits, like DBH and

crown volume, which are crucial for forest stand growth

studies and forest ecology [18]. Near-ground vegetation in

the scene was assigned the shrub label.

Data was recorded across three different seasons and we

first focused on labeling the March 2023 session of the data.

Where possible we exploited the spatial alignment of the

LiDAR data detailed in Sec. III-B to transfer labels from

one timestamp to another via nearest neighbor assignment.

This produced a coarse labeling of the data for October 2023

and July 2024, where we performed an additional round of

clean-up and validation to ensure complete and accurate an-

notations, especially for parts where the vegetation changed.

Overall, we provide annotated point cloud data for six

plots collected in March 2023, October 2023, and July 2024.

In Tab. II, we provide plot-wise statistics of the number

of annotated trees. In total, we annotated 2,134 trees. We

provide for all reference trees of the March 2023 data

individual reference measurements of tree species, DBH,

length of clear wood, height of first green branch, and also

qualitative measures such as number of bends, dead limbs,



and condition of the crown (e.g., broken top, crown defects),

which were manually measured and assessed by forestry

domain experts. In terms of label distribution, the annotated

data contains 28.5% tree points, 22.8% shrub, 27.1% ground

points, and 0.4% outlier points; 37.5% of the tree points are

stem and the remaining 62.5% are canopy or foliage.

IV. BASELINE RESULTS

In this section, we present results for two essential tasks

relevant in forestry robotics: LiDAR-based semantic interpre-

tation and LiDAR-based DBH trait estimation. We present

results with off-the-shelf commonly employed approaches as

well as a purpose-fit approach which we open-source as a

baseline to further bootstrap research in this domain.

A. Semantic Interpretation

For this task, we evaluate the performance of several

approaches that perform semantic, instance or panoptic seg-

mentation. In our case, the ground and shrub classes are

treated as stuff classes [22] for panoptic segmentation, while

the tree class has instances and is treated as a thing class.

For reproducible results, we split the data in DigiForests

(see Tab. II) into the following proportions. For training,

we use the full temporal sequence (March 2023, Octo-

ber 2023, July 2024) for plot D2, and plots M1, M3, M5

from the March 2023 data. For validation, i.e., selection

of hyperparameters, we use the full temporal sequence of

plot C1. For testing, we use the full temporal sequence

from plot M2. This selection leads to a clear separation of

recording locations across the three splits and for the test set

to see a mixture of tree species and distributions, allowing

to test the generalization performance of trained models. In

summary, we have 6 plots for training, 3 plots for validation,

and 3 plots as test set, with each set including one full

temporal sequence of data.

Our dataset contains semantic labels for ground, shrub, and

tree points and also instance labels for tree points. Tree points

further can have semantic labels for stem or canopy. Hence,

our dataset uniquely lends itself to investigate multiple differ-

ent problems in the wider context of semantic interpretation

of forest scenes using commercial rotating LiDARs. We

therefore tested a mix of recent approaches for semantic,

instance and panoptic segmentation from both the wider

automated driving domain and the more adjacent agricultural

domain. Following established protocols [1], [30], [42], and

given the mix of approaches we tested, where possible we

report the standard intersection-over-union (IoU) metric for

performance on semantic classes and mean IoU (mIoU) for

overall semantic segmentation performance. For evaluating

panoptic segmentation performance, we use the panoptic

quality metric [22], [35], where the per-class panoptic qual-

ity PQ
c

is given by [35]

PQ
c
=











∑

(p,g)∈TP IoU(p, g)

|TP|+ 1
2 |FP|+ 1

2 |FN|
, if c is thing

IoU(p, g) , if c is stuff

, (1)

where p refers to the predicted and g to the ground truth

labels, TP is the set of true positives, FP is the set of false

positives, FN is the set of false negatives, and | · | represents

the cardinality of the set. For thing classes, we follow the

definition by Kirillov et al. [21] for data association of

instance segments. Each predicted segment p is assigned to

the ground truth segment g if its IoU is greater than 0.5 and is

added to TP. Predicted instances p without a matching ground

truth segment are added to FP and ground truth segments g

without an associated prediction are added to FN. For stuff

classes, we follow the implementation by Behley et al. [3]

and compute simply the IoU between all points p assigned

to class c and the points g with class c in the ground truth.

As defined in Eq. (1), this renders PQc for stuff classes the

same as its IoU which allows easier comparison between

purely semantic and panoptic segmentation approaches. The

overall panoptic quality PQ over all classes C, i.e., ground,

tree, and shrub, are given by the average over class-wise

panoptic qualities given by:

PQ =
1

|C|

∑

c∈C

PQ
c
. (2)

We trained multiple off-the-shelf promising baselines and

also implemented a purpose-fit approach for semantic in-

terpretation on our DigiForests dataset. For all approaches,

we report the relevant metrics on the test set in Tab. III. For

reproducibility, we provide the scripts to compute the metrics

based on the ground truth and predictions by segmentation

approaches. First, from the automated driving domain, we

trained the range-image based approach by Fusaro et al. [15]

as a semantic segmentation baseline. We used the ground,

shrub, stem, and canopy labels as the target semantic classes,

and report the IoU and the mIoU across these classes.

Then, we trained the approach by Marks et al. [30], an

effective approach from the agricultural domain for instance

segmenting leafs on plants. We adapted it to perform instance

segmentation of the trees. Similar to how they report PQ

on the leaf class in their work, we report here the PQ on

just the tree class. We additionally trained the transformer-

based MaskPLS by Marcuzzi et al. [29] developed to perform

panoptic segmentation in the automated driving domain.

MaskPLS predicts a set of non-overlapping binary masks,

each representing a single instance belonging to either a thing

or a stuff class. It cannot segment a tree instance also for

stem and canopy simultaneously. Hence, we train it using

ground, shrub and tree as target labels and report the IoU

for ground and shrub, PQtree for tree, and mean PQ across

the three classes as defined by Eq. (1) and Eq. (2).

We also implemented our own approach for panoptic

segmentation while also designing it to be capable of both

fine-grained stem-canopy and tree instance segmentation. We

report the results of our approach in Tab. III as “Forest

Pan. Seg.”. Our network consists of a MinkUNet [7] back-

end using sparse spatial convolutions with 790k parameters

producing a feature embedding per point. We then pass the

embedding through two network heads: a semantic segmenta-

tion head to predict either ground, shrub, stem or canopy, and



TABLE III: Results for semantic interpretation on the test set of DigiForests. For stuff classes, IoU is equivalent to PQ
c

as defined by
Eq. (1). mIoU is computed considering the ground, shrub, stem and canopy classes. PQ is computed considering the ground, shrub, and
tree classes. We implemented our own approach for panoptic segmentation, reported here as “Forest Pan. Seg.”

Approach
IoU

mIoU PQtree PQ

Ground Shrub Stem Canopy

Fusaro et al. [15] 79.4 66.0 42.6 12.8 50.2 - -
Marks et al. [30] - - - - - 53.1 -
Marcuzzi et al. [29] 65.9 53.9 - - - 57.0 58.9
Forest Pan. Seg. (Ours) 79.5 72.7 80.8 48.2 70.31 58.4 70.2

an offset vector prediction head which produces a per-point

offset vector to the center of the instance a point belongs to.

We then generate a tree mask using the predicted stem and

canopy semantics, add the predicted offset vectors just to

the points falling in the tree mask, and cluster the shifted

tree points using DBSCAN [11] to produce an instance

segmentation of trees. With this, our approach is capable

of ground, shrub, stem, and canopy segmentation and also

tree instance segmentation. From Tab. III we see that our

approach outperforms all other baselines on semantic and

panoptic segmentation metrics.

B. DBH Trait Estimation

Tree diameter at breast height is widely considered the

most crucial parameter in forestry [25]. As part of our

DigiForests dataset, we provide a forest inventory for trees

from the March 2023 session which also includes tree

DBH. Common approaches for DBH estimation perform

either circle [36] or cylinder fitting [40], considering that

either a manual segmentation of trees is available [40] or

segmenting the trees as part of their approach as well [28].

We report in Tab. IV baseline DBH estimation results of

several approaches. To evaluate an approach, each tree in the

known ground truth is assigned to the closest predicted tree

location using a nearest neighbor search on the tree position

and a maximum search radius of 0.7 m. As metrics, we use

the recall of inventory trees reconstructed and RMSE of

their estimated DBH. We report these values as “Plot Avg.”

by averaging the results across each plot [24], [25] and as

“Total” by considering all trees in the inventory.

We first report the results of the approach by Freißmuth et

al. [13], an online approach for tree DBH estimation capable

of operating at sensor frame rate. Then, we report the results

of the approach from Krisanski et al. [23], a deep-learning

based approach for tree segmentation and geometric DBH

estimation. Next, we use our panoptic segmentation approach

detailed in Sec. IV-A to obtain just a stem cloud and then

follow the methodology of Malladi et al. [28] to fit cylinders

to the stems. The results of our DBH estimation are reported

as “For. Pan. Seg. + Cyl. Fit.” in Tab. IV. Finally, we use

ground truth annotations directly to obtain the stem cloud

and repeat the cylinder fitting methodology as above. The

result of this is reported as “G.T. + Cyl. Fit.” in Tab. IV.

From the results, we see that the approach of Freißmuth et

al. [13] achieves the best RMSE of the evaulated methods,

but has a lower recall compared to other methods. The

approach is an online method and might fail in reconstructing

TABLE IV: Results for tree DBH estimation on DigiForests. RMSE
is reported in cm.

Approach
Plot Avg.

Recall
Total

Recall
Plot Avg.

RMSE
Total
RMSE

Freißmuth et al. [13] 0.88 0.92 3.42 3.15
Krisanksi et al. [23] 0.98 0.98 6.10 7.43
For. Pan. Seg. + Cyl. Fit. 0.98 0.98 5.32 6.41
G.T. + Cyl. Fit. 0.98 0.98 3.55 4.04

challenging trees, whereas the others are offline and thus

have the chance to perform better in such scenarios. The

approach by Krisanski et al. [23] is indeed better in recall.

Using our segmentation followed by cylinder fitting performs

similar to Krisanski et al. [23] in recall and outperforms

them in terms of RMSE. Comparing the results of using

ground truth annotations followed by cylinder fitting, we

see that, as expected, the quality of stem segmentation itself

influences the performance of DBH estimation. Better results

can therefore be obtained by first improving the segmenta-

tion results in the pipeline. Futhermore, more sophisticated

geometric primitives for estimating DBH can be explored.

We do however note that, from earlier studies [24], [25],

the accuracy of DBH estimation using even TLS sensors

typically falls within the range of 1 to 4 cm.

V. CONCLUSION

In this paper, we presented DigiForests, a novel dataset

providing longitudinal data of forestry environments for

robotics research. Together with the data recorded with a

backpack-carried rotating LiDAR sensor frequently used in

robotics, we provide annotated point clouds that allow to

investigate semantic interpretation and tree trait estimation in

forestry. The provided data is complemented by a semantic

interpretation benchmark, where we provide server-sided

evaluation on a hidden test set enabling the unbiased com-

parison of approaches targeted at performing tasks relevant

for forestry robotics. We report the performance of several

off-the-shelf approaches and also open source a purpose-fit

approach which can be used to bootstrap further research.

Besides the presented applications, we see the prospect to

investigate with this data further tasks, such as LiDAR-based

odometry in unstructured environments, better approaches

for loop closure, and temporal data association to enable the

tracking of traits for forestry monitoring applications.
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